分享
分享赚钱 收藏 举报 版权申诉 / 17

类型2022-2023学年度京改版八年级数学上册第十一章实数和二次根式专题攻克练习题(含答案解析).docx

  • 上传人:a****
  • 文档编号:639214
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:17
  • 大小:314.35KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年度 改版 八年 级数 上册 第十一 实数 二次 根式 专题 攻克 练习题 答案 解析
    资源描述:

    1、八年级数学上册第十一章实数和二次根式专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列计算正确的是()ABCD2、下列说法正确的有()无限小数不一定是无理数;无理数一定是无限小数;带根号的数不一

    2、定是无理数;不带根号的数一定是有理数ABCD3、已知:a=,b=,则a与b的关系是()A相等B互为相反数C互为倒数D平方相等4、下列实数:3,0,0.35,其中最小的实数是()A3B0CD0.355、按如图所示的运算程序,能使输出y值为1的是()ABCD6、8的相反数的立方根是()A2BC2D7、在根式,中,与是同类二次根式的有()A1个B2个C3个D4个8、实数a在数轴上的位置如图所示,则+化简后为()A7B7C2a15D无法确定9、根据以下程序,当输入时,输出结果为()AB2C6D10、定义a*b3ab,abba2,则下列结论正确的有()个3*272(1)5(*)()若a*bb*a,则ab

    3、A1个B2个C3个D4个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、_2、对于实数a,b,定义运算“”如下:ab=a2ab,例如,53=5253=10若(x+1)(x2)=6,则x的值为_3、如图所示,直径为个单位长度的圆从原点沿着数轴负半轴方向无滑动的滚动一周到达点,则点表示的数是_4、 _, _5、规定一种新运算“*”:a*bab,则方程x*21*x的解为_三、解答题(5小题,每小题10分,共计50分)1、化简:(1);(2);(3);(4)2、阅读下列解题过程:;则:(1)化简:(2)观察上面的解题过程,请你猜想一规律:直接写出式子;(3)利用这一规律计算:的

    4、值3、在下列各式中,哪些是最简二次根式?哪些不是?对不是最简二次根式的进行化简(1)(2)(3)(4)(5)4、阅读下面的材料,解答后面所给出的问题:两个含二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式例如:与,与(1)请你写出两个二次根式,使它们互为有理化因式:_,这样化简一个分母含有二次根式的式子时,采用分母、分子同乘分母的有理化因式的方法就可以了例如:(2)请仿照上述方法化简:;(3)比较与的大小5、现有一块长为、宽为的木板,能否在这块木板上截出两个面积是和的正方形木板?-参考答案-一、单选题1、D【解析】【分析】根据二次根式的乘法运算法则对A、D选

    5、项进行判断,根据算术平方根的意义对B选项进行判断,根据积的乘方对C选项进行判断【详解】解: ,故A选项错误,D选项正确;,故B选项错误;,故C选项错误故选:D【考点】本题考查二次根式的运算及积的乘方熟练掌握各运算法则是解题关键2、A【解析】【分析】根据无理数是无限不循环小数进行判断即可【详解】解:无限小数不一定都是无理数,如是有理数,故正确;无理数一定是无限小数,故正确;带根号的数不一定都是无理数,如是有理数,故正确;不带根号的数不一定是有理数,如是无理数,故错误;故选:A【考点】本题考查的是实数的概念,掌握实数的分类、正确区分有理数和无理数是解题的关键,注意无理数是无限不循环小数3、C【解析

    6、】【详解】因为,故选C.4、C【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可【详解】解:根据实数比较大小的方法,可得00.353,所以最小的实数是,故选:C【考点】本题考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数0负实数,两个负实数绝对值大的反而小5、D【解析】【分析】逐项代入,寻找正确答案即可.【详解】解:A选项满足mn,则y=2m+1=3; B选项不满足mn,则y=2n-1=-1; C选项满足mn,则y=2m+1=3; D选项不满足mn,则y=2n-1=1; 故答案为D;【考点】本题考查了根据条件代数式

    7、求值问题,解答的关键在于根据条件正确地代入代数式及代入的值.6、C【解析】【详解】【分析】根据相反数的定义、立方根的概念计算即可【详解】8的相反数是8,8的立方根是2,则8的相反数的立方根是2,故选C【考点】本题考查了实数的性质,掌握相反数的定义、立方根的概念是解题的关键7、B【解析】【分析】二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式,继而可得出答案【详解】=5,=,=,故与是同类二次根式的有:,共2个,故选B.【考点】本题考查了同类二次根式的知识,解题的关键是掌握同类二次根式是化为最简二次根式后被开方数相同的二次根式8、A【解析】【详解】根据二次根

    8、式的性质可得:+,因为,所以原式=,故选A.9、A【解析】【分析】把代入程序,算的结果小于即可输出,故可求解【详解】把代入程序,故把x=2代入程序得把代入程序,输出故选A【考点】此题主要考查求一个数的算术平方根,实数大小的比较,解题的关键是根据程序进行计算求解10、C【解析】【分析】先按照定义书写出正确的式子再进行计算就可解决本题【详解】、,故计算正确,符合题意; 、,故计算正确,符合题意;、,故计算错误,不符合题意; 、,a*bb*a,解得:, 故计算正确,符合题意综上所述,正确的有:,共3个故选:C【考点】本题考查了按照定义运算的知识,严格按照定义书写出正确的式子,准确的计算是解决本题的关

    9、键二、填空题1、6【解析】【分析】根据算术平方根、有理数的乘方运算即可得【详解】故答案为:6【考点】本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键2、1【解析】【分析】根据新定义运算对式子进行变形得到关于x的方程,解方程即可得解.【详解】由题意得,(x+1)2(x+1)(x2)=6,整理得,3x+3=6,解得,x=1,故答案为1【考点】本题考查了解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键3、-【解析】【分析】直接利用圆的周长公式得出圆的周长,再利用对应数字性质得出答案【详解】由题意可得:圆的周长为,直径为单位1的硬币从原点处沿着数轴负半轴

    10、无滑动的逆时针滚动一周到达A点,A点表示的数是:-故答案为:-【考点】此题考查了数轴的特点及圆的周长公式,正确得出圆的周长是解题的关键4、 , 3【解析】【分析】根据求立方根和二次根式的乘方运算法则分别计算即可得到结果【详解】解:;,故答案为:-3;3【考点】此题主要考查了实数的运算,熟练掌握运算法则是解答此题的关键5、【解析】【分析】根据题中的新定义化简所求方程,求出方程的解即可【详解】根据题意得:x2=1,x=,解得:x,故答案为x.【考点】此题的关键是掌握新运算规则,转化成一元一次方程,再解这个一元一次方程即可三、解答题1、(1)27;(2);(3);(4)【解析】【分析】根据积与商的算

    11、术平方根的性质将原式化为最简二次根式即可【详解】解:(1);(2);(3);(4)【考点】本题主要考查了最简二次根式,熟知定义以及二次根式的性质是解题的关键2、(1);(2);(3)2019【解析】【分析】(1)可分母有理化也可利用上面的规律;(2)可分母有理化也可利用上面的规律;(3)先根据已知得到,合并后根据平方差公式即可求解【详解】解:(1),(2)原式 故答案为:(3) (202012019【考点】本题主要考查了分母有理化的应用、平方差公式、二次根式的混合运算、规律型:数字的变化类,理解题意找到规律是解题关键3、(1)不是,;(2)不是,;(3)是;(4)不是,;(5)不是,.【解析】

    12、【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是【详解】(1),含有开得尽方的因数,因此不是最简二次根式(2),被开方数中含有分母,因此它不是最简二次根式;(3),被开方数不含分母,被开方数不含能开得尽方的因数或因式,因此它是最简二次根式;(4),在二次根式的被开方数中,含有小数,不是最简二次根式;(5),被开方数中含有分母,因此它不是最简二次根式【考点】本题考查最简二次根式的定义解决此题的关键,是掌握最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因

    13、数或因式4、 (1)与(答案不唯一)(2)(3)【解析】【分析】(1)利用互为有理化因式的定义求解;(2)把分子和分母分别乘以,然后利用二次根式的乘法法则运算即可;(3)分别化简与,再利用无理数比较大小的方法比较即可(1)根据互为有理化因式的定义可得:与(答案不唯一)(2);(3),【考点】本题考查二次根式的混合运算,:先把二次根式化简为最简二次根式,然后进行二次根式的乘除运算,在合并即可,解题的关键是熟练掌握并运用二次根式的性质和运算法则5、能截出两个面积是和的正方形木板.【解析】【分析】根据正方形的面积可以分别求得两个正方形的边长是和,显然只需比较两个正方形的边长的和与7.5的大小即可【详解】两个面积是和的正方形木板的边长是和,;,;答:能够在这块木板上截出两个分别是8dm2和18dm2的正方形木板【考点】此题考查了算术平方根和估算无理数的大小,能够正确求得每个正方形的边长,然后再进行比较是本题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度京改版八年级数学上册第十一章实数和二次根式专题攻克练习题(含答案解析).docx
    链接地址:https://www.ketangku.com/wenku/file-639214.html
    相关资源 更多
  • 任命后个人表态发言4篇 任命后个人表态发言三篇 任命后个人表态发言稿 任命后个人表态发言.docx任命后个人表态发言4篇 任命后个人表态发言三篇 任命后个人表态发言稿 任命后个人表态发言.docx
  • 任命后个人表态发言.docx任命后个人表态发言.docx
  • 任务阅读(阅读还原)期末复习专项练习10篇-2022-2023学年人教版英语九年级上册.docx任务阅读(阅读还原)期末复习专项练习10篇-2022-2023学年人教版英语九年级上册.docx
  • 任务阅读(阅读还原)期中复习专项练习10篇-2022-2023学年人教版英语七年级上册.docx任务阅读(阅读还原)期中复习专项练习10篇-2022-2023学年人教版英语七年级上册.docx
  • 任务阅读(阅读填空)期末复习专项练习10篇-2021-2022学年牛津译林英语七年级下册.docx任务阅读(阅读填空)期末复习专项练习10篇-2021-2022学年牛津译林英语七年级下册.docx
  • 任务突破练7 赏析环境——明辨类型,关注效果.docx任务突破练7 赏析环境——明辨类型,关注效果.docx
  • 任务突破练2 论证分析——关注论据判定,辨清论证思路.docx任务突破练2 论证分析——关注论据判定,辨清论证思路.docx
  • 任务突破练21 语用中的常备考点.docx任务突破练21 语用中的常备考点.docx
  • 任务突破练20 情境化的语言表达题.docx任务突破练20 情境化的语言表达题.docx
  • 任务突破练12 文言文选择题.docx任务突破练12 文言文选择题.docx
  • 任务三 尝试创作.docx任务三 尝试创作.docx
  • 任前集体廉政谈话会讲话提纲10篇.docx任前集体廉政谈话会讲话提纲10篇.docx
  • 任前廉政谈话表态发言最新.docx任前廉政谈话表态发言最新.docx
  • 价值量和社会劳动生产率题型专项讲练(以近三年高考真题为例).docx价值量和社会劳动生产率题型专项讲练(以近三年高考真题为例).docx
  • 仰望星空与脚踏实地.docx仰望星空与脚踏实地.docx
  • 仰望大树.docx仰望大树.docx
  • 仪表联锁系统管理制度.docx仪表联锁系统管理制度.docx
  • 仪表联锁系统管理.docx仪表联锁系统管理.docx
  • 仪表维护管理制度.docx仪表维护管理制度.docx
  • 仪表电工岗位操作规程.docx仪表电工岗位操作规程.docx
  • 仪表公司消防应急预案.docx仪表公司消防应急预案.docx
  • 仪控部岗位责任制.docx仪控部岗位责任制.docx
  • 仪器——2022年浙江省杭州市中考科学.docx仪器——2022年浙江省杭州市中考科学.docx
  • 以项目实践谈建筑施工项目的安全生产管理.docx以项目实践谈建筑施工项目的安全生产管理.docx
  • 以车抵押借款合同 .docx以车抵押借款合同 .docx
  • 以质量安全为核心 强化现场标准化管理.docx以质量安全为核心 强化现场标准化管理.docx
  • 以积极向上的态度涵养高尚师德.docx以积极向上的态度涵养高尚师德.docx
  • 以科学发展观指导铁路安全管理创新.docx以科学发展观指导铁路安全管理创新.docx
  • 以社会组织参与基层社会治理为主题的代表约见活动领导讲话.docx以社会组织参与基层社会治理为主题的代表约见活动领导讲话.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1