分享
分享赚钱 收藏 举报 版权申诉 / 17

类型2022-2023学年度京改版八年级数学上册第十章分式定向训练试题(详解版).docx

  • 上传人:a****
  • 文档编号:639699
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:17
  • 大小:210.30KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年度 改版 八年 级数 上册 第十 分式 定向 训练 试题 详解
    资源描述:

    1、京改版八年级数学上册第十章分式定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、我国古代著作四元玉鉴记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽每株脚钱三文足,无钱准与一株椽“其大意为:现

    2、请人代买一批椽,这批椽的价钱为6210文如果每件椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为株,则符合题意的方程是()ABCD2、分式有意义,则x的取值范围是()Ax2Bx2Cx2Dx23、分式化简后的结果为()ABCD4、一只船顺流航行90千米与逆流航行60千米所用的时间相等,若水流的速度是2千米/时,求船在静水中的速度如果设船在静水中的速度为x千米/时,可列出的方程是()ABCD5、下列等式成立的是()A(3)29B(3)2Ca14Da2b66、约分:()ABCD7、已知某新型感冒病毒的直径约为0.000000823米,

    3、将0.000000823用科学记数法表示为()A8.23106B8.23107C8.23106D8.231078、化简的结果是()ABCD9、九章算术中记录的一道题译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天,如果用快马送,所需的时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间设规定时间为x天,则可列方程为()ABCD10、若关于x的分式方程有增根,则m的值是()Am2或m6Bm2Cm6Dm2或m6第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、我国元代数学家朱世杰的著作四元玉鉴中记载“买椽多少”问题:“六贯二百一十钱,请人

    4、去买几株椽,每株脚钱三文足,无钱准与一株椽”其大意为:用6210文钱请人代买一批椽如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是_2、分式与的最简公分母是_3、化简:_4、已知,则_5、全民齐心协力共建共享文明城区建设某服装加工厂计划为环卫工人生产1200套冬季工作服,在加工完480套后,工厂引进了新设备,结果工作效率比原计划提高了20%,结果共用54天完成了全部生产任务若设该加工厂原计划每天加工x套冬季工作服,则根据题意列方程为_三、解答题(5小题,每小题10分,共计50分)1、阅读下列材料:

    5、小铭和小雨在学习过程中有如下一段对话:小铭:“我知道一般当mn时,m2nmn2可是我见到有这样一个神奇的等式:()2()2(其中a,b为任意实数,且b0)你相信它成立吗?”小雨:“我可以先给a,b取几组特殊值验证一下看看”完成下列任务:(1)请选择两组你喜欢的、合适的a,b的值,分别代入阅读材料中的等式,写出代入后得到的具体等式并验证它们是否成立;当a2,b3时,等式_(填写“成立”或“不成立”);当a3,b5时,等式_(填写“成立”或“不成立”)(2)对于任意实数a,b(b0),通过计算说明()2()2是否成立2、北京冬奥会的吉祥物冰墩墩深受大家喜爱,出现“一墩难求”的现象负责生产冰墩墩硅胶

    6、外壳的公司收到了一笔48万个的订单,若按原计划生产的日产量计算,则完成这笔订单的生产时间将超过一年扩大生产规模后,日产量可提高到原来的30倍,生产时间能减少464天(1)扩大生产规模后每天生产多少个冰墩墩硅胶外壳?(2)该公司通过增加模具的方式提高日产量,本来只有两套模具,每套模具每天平均生产500个冰墩墩硅胶外壳,为达到扩大生产规模后的日产量,至少需要增加多少套模具?3、现有一装修工程,若甲、乙两队装修队合作,需要12天完成;若甲队先做5天,剩余部分再由甲乙两队合作,还需要9天才能完成求:(1)甲乙两个装修队单独完成分别需要几天?(2)已知甲队每天施工费用4000元,乙队每天施工费用为200

    7、0元,要使该工程施工总费用为70000元,则甲装修队施工多少天?(3)甲装修队有装修工人12人,乙装修队有装修工人10人,该工程需要在13天内(包括13天)完成,该工程由甲乙两队合作完成,两队合作4天后,乙队另有任务需调出部分人员,则乙队最多调走多少人?4、先化简,然后从,0,1,3中选一个合适的数代入求值5、解方程:-参考答案-一、单选题1、A【解析】【分析】根据“这批椽的价钱为6210文”、“每件椽的运费为3文,剩下的椽的运费恰好等于一株椽的价钱”列出方程解答【详解】解:由题意得:,故选A.【考点】本题考查了分式方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,

    8、列出方程,再求解,准确的找到等量关系并用方程表示出来是解题的关键2、A【解析】【分析】分式有意义,分母不等于零,据此来求x的取值范围【详解】当分母x-20即x2时,分式有意义;故选:A【考点】本题考查了分式有意义的条件解题的关键是记住分式无意义时分母为零3、B【解析】【分析】根据异分母分式相加减的运算法则计算即可异分母分式相加减,先通分,再根据同分母分式相加减的法则计算【详解】解:故选:B【考点】本题主要考查了分式的加减,熟练掌握分式通分的方法是解答本题的关键4、A【解析】【分析】未知量是速度,有路程,一定是根据时间来列等量关系的关键描述语是:顺流航行90千米与逆流航行60千米所用的时间相等,

    9、等量关系为:顺流航行90千米时间=逆流航行60千米所用的时间【详解】顺流所用的时间为:;逆流所用的时间为:.所列方程为:.故选A【考点】本题考查由实际问题抽象出分式方程,解题的关键是读懂题意,得到分式方程.5、B【解析】【分析】结合幂的乘方与积的乘方的概念和运算法则进行求解即可【详解】解:A、(-3)2=9-9,本选项错误;B、(-3)-2=,本选项正确;C、(a-12)2=a-24a14,本选项错误;D、(-a-1b-3)-2=a2b6-a2b6,本选项错误故选B【考点】本题考查了幂的乘方与积的乘方,解答本题的关键在于熟练掌握该知识点的概念和运算法则6、A【解析】【分析】先进行乘法运算,然后

    10、约去分子分母的公因式即可得到答案.【详解】原式=,故选A.【考点】本题主要考查分式的乘法运算法则,掌握约分,是解题的关键.7、B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.000000823=8.2310-7故选B【考点】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定8、D【解析】【分析】最简公分母为,通分后求和即可【详解】解:的最简公分母为,通分得故选D【

    11、考点】本题考查了分式加法运算解题的关键与难点是找出通分时分式的最简公分母9、A【解析】【分析】根据题意先求得快马的速度和慢马的速度,根据快马的速度是慢马的2倍列分式方程即可【详解】设规定时间为x天,慢马的速度为,快马的速度为,则故选A【考点】本题考查了分式方程的应用,根据题意找到等量关系是解题的关键10、A【解析】【分析】根据解分式方程的方法去分母,把分式方程化为整式方程;接下来把增根的值代入到整式方程中,就可以求出m的值【详解】关于x的分式方程有增根,是方程 的根,当时,解得:当时,解得:故选A.【考点】本题主要考查的是分式方程的相关知识,解题的关键是明确增根的含义二、填空题1、【解析】【分

    12、析】根据单价=总价 数量结合少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,即可得出关于x的分式方程,此题得解.【详解】依据题意,得:故答案为:【考点】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.2、m(m+3)(m3)【解析】【分析】先把两分式化成最简形式得;,然后确定最简公分母即可【详解】解:化简两分式得:,最简公分母是m(m+3)(m3)【考点】本题主要考查了最简公分母,公分母是能使几个分式同时去掉分母的式子,几个含分母的式子系数取其最小公倍数,字母取其最高次数即得公分母3、1【解析】【分析】根据分式的加减运算法则以及乘除运算法则即可求出答案【详解】

    13、解:原式=1故答案为:1【考点】本题考查分式的混合运算,解题的关键是熟练运用分式的加减运算以及乘除运算法则,本题属于基础题型4、【解析】【分析】根据分式的基本性质,由可得,然后代入式子进行计算即可得解【详解】解:,则故答案为:【考点】本题考查了分式的化简求值,掌握分式的基本性质并能灵活运用性质进行分式的化简求值是解题的关键5、【解析】【分析】设该加工厂原计划每天加工x套冬季工作服,则实际每天加工套,则按原计划的效率加工天,按提高后的工作效率加工天,从而可得答案【详解】解:设该加工厂原计划每天加工x套冬季工作服,则提高效率后每天加工套, 故答案为:【考点】本题考查的是分式方程的应用,掌握利用分式

    14、方程解决工作量问题是解题的关键三、解答题1、(1)成立;成立;(2)成立【解析】【分析】(1)把a与b的值代入两边的代数式中计算即可,若值相等则成立,否则不成立;把a与b的值代入两边的代数式中计算即可,若值相等则成立,否则不成立;(2)分别把等式两边通分并化简,结果相等则成立,否则不成立【详解】(1)成立;成立(2)左边()2,右边()2所以等式()2()2成立【考点】本题考查了求代数式的值,分式加法运算,体现了由特殊到一般的数学思想,掌握分式的加法运算法则是关键2、 (1)30000个(2)58套【解析】【分析】(1)根据题设条件,表示出原计划用的时间,和扩大规模后用的时间,根据前后时间差为

    15、464天,可列分式方程,解方程即可得到答案;(2)由(1)可得扩大规模后的日产量,根据每套模具每天平均生产500个,可求出需要的模具总数,进而可得答案(1)解:设原计划的日产量为x个冰墩墩硅胶外壳,则扩大生产规模后每天生产30x个,由题意可得,解之得:x=1000,经检验x=1000是原方程的解且符合题意,30x=30000,所以扩大生产规模后每天生产30000个冰墩墩硅胶外壳(2)解:扩大生产规模后每天生产30000个冰墩墩硅胶外壳,根据题意可得,需要的模具个数为个,所以为达到扩大生产规模后的日产量,至少需要增加60-2=58套模具【考点】本题考查分式方程的实际应用,准确理解题意,并根据题意

    16、找出等量关系是解题的关键3、(1)甲、乙两装修队单独完成此项工程分别需要20天、30天;(2)10天;(3)2人【解析】【分析】(1)等量关系为:甲的工作效率5+甲乙合作的工作效率9=1,先算出甲单独完成此项工程需要多少个月而后算出乙单独完成需要的时间;(2)两个关系式:甲乙两个工程队需完成整个工程;工程施工总费用为70000元(3)设乙队调走m人,利用(1)中所求数据得出甲乙两队每人一天完成的工作量,进而得出不等式求出即可【详解】解:(1)设甲装修队单独完成此项工程需要x天根据题意,得,解得x=20,经检验,x=20是原方程的解,答:甲、乙两装修队单独完成此项工程分别需要20,30天(2)设

    17、实际工作中甲、乙两装修队分别做a、b天根据题意,得,解得a=10,b=15答:要使该工程施工总费用为70000元,甲装修队应施工10天(3)设乙装修队调走m人,由题意可得:,解得:m,m的最大整数值为2,答:乙队最多调走2人【考点】本题考查了分式方程的应用以及不等式解法与应用,利用总工作量为1得出等式方程是解决问题的关键4、,【解析】【分析】先计算括号内的分式减法,再计算分式的除法,然后选一个使得分式有意义的x的值代入求值即可【详解】原式分式的分母不能为0解得:m不能为,0,3则选代入得:原式【考点】本题考查了分式的减法与除法、分式有意义的条件等知识点,掌握分式的运算法则是解题关键5、【解析】【分析】方程两边同时乘以(3x1),把分式方程化为整式方程,求出整式方程的解后再检验即得结果【详解】解:方程两边同时乘以(3x1),约去分母得:,解这个方程,得,经检验:是原方程的解,原方程的解为【考点】本题考查了分式方程的解法,属于基础题型,熟练掌握解分式方程的方法是关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度京改版八年级数学上册第十章分式定向训练试题(详解版).docx
    链接地址:https://www.ketangku.com/wenku/file-639699.html
    关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1