分享
分享赚钱 收藏 举报 版权申诉 / 8

类型2022年高考数学一轮复习 考点规范练60 随机事件的概率(含解析)新人教A版.docx

  • 上传人:a****
  • 文档编号:517644
  • 上传时间:2025-12-09
  • 格式:DOCX
  • 页数:8
  • 大小:111.63KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年高考数学一轮复习 考点规范练60 随机事件的概率含解析新人教A版 2022 年高 数学 一轮 复习 考点 规范 60 随机 事件 概率 解析 新人
    资源描述:

    1、考点规范练60随机事件的概率基础巩固1.从正五边形的五个顶点中,随机选择三个顶点连成三角形,记“这个三角形是等腰三角形”为事件A,则下列推断正确的是()A.事件A发生的概率等于15B.事件A发生的概率等于25C.事件A是不可能事件D.事件A是必然事件答案:D解析:因为从正五边形的五个顶点中随机选三个顶点连成的三角形都是等腰三角形,所以事件A是必然事件.故选D.2.从16个同类产品(其中有14个正品,2个次品)中任意抽取3个,下列事件的概率为1的是()A.三个都是正品B.三个都是次品C.三个中至少有一个是正品D.三个中至少有一个是次品答案:C解析:在16个同类产品中,只有2个次品,可知抽取3个产

    2、品,A是随机事件,B是不可能事件,C是必然事件,D是随机事件,又必然事件的概率为1,故C正确.3.从1,2,9中任取两个数,其中:恰有一个偶数和恰有一个奇数;至少有一个奇数和两个数都是奇数;至少有一个奇数和两个数都是偶数;至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是()A.B.C.D.答案:C解析:从9个数字中取两个数有三种情况:一奇一偶,两奇,两偶,故只有中两事件是对立事件.4.从一箱产品中随机抽取一件,设事件A为“抽到一等品”,事件B为“抽到二等品”,事件C为“抽到三等品”,且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的产品不是一等品”的概率为

    3、()A.0.7B.0.65C.0.35D.0.5答案:C解析:“抽到的产品不是一等品”与事件A是对立事件,所求概率为1-P(A)=0.35.5.从某班学生中任意找出一人,如果该同学的身高小于160 cm 的概率为0.2,该同学的身高在160,175(单位:cm)内的概率为0.5,那么该同学的身高超过175 cm的概率为()A.0.2B.0.3C.0.7D.0.8答案:B解析:因为必然事件发生的概率是1,所以该同学的身高超过175cm的概率为1-0.2-0.5=0.3,故选B.6.中国乒乓球队中的甲、乙两名队员参加奥运会乒乓球女子单打比赛,已知甲夺得冠军的概率为37,乙夺得冠军的概率为14,则中

    4、国队夺得女子乒乓球单打冠军的概率为.答案:1928解析:因为事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即中国队夺得女子乒乓球单打冠军的概率为37+14=1928.7.下列命题:对立事件一定是互斥事件;若A,B为两个随机事件,则P(AB)=P(A)+P(B);若事件A,B,C彼此互斥,则P(A)+P(B)+P(C)=1;若事件A,B满足P(A)+P(B)=1,则A与B是对立事件.其中真命题的序号是.答案:解析:根据对立事件与互斥事件的关系,得正确,不正确.当A,B是互斥事件时,才有P

    5、(AB)=P(A)+P(B),不正确.P(A)+P(B)+P(C)不一定等于1,还可能小于1,不正确.例如:袋中有除颜色外,其余均相同的红、黄、黑、绿4个球,从袋中任摸一个球,设事件A=摸到红球或黄球,事件B=摸到黄球或黑球,显然事件A与B不是对立事件,但P(A)+P(B)=12+12=1.8.某班选派5人参加学校举行的数学竞赛,获奖的人数及其概率如下:获奖人数/人012345概率0.10.16xy0.2z(1)若获奖人数不超过2的概率为0.56,求x的值;(2)若获奖人数最多为4的概率为0.96,最少为3的概率为0.44,求y,z的值.解:记“在竞赛中,有k人获奖”为事件Ak(kN,k5),

    6、则事件Ak彼此互斥.(1)获奖人数不超过2的概率为0.56,P(A0)+P(A1)+P(A2)=0.1+0.16+x=0.56,解得x=0.3.(2)由获奖人数最多为4的概率为0.96,得P(A5)=1-0.96=0.04,即z=0.04.由获奖人数最少为3的概率为0.44,得P(A3)+P(A4)+P(A5)=0.44,即y+0.2+0.04=0.44.解得y=0.2.9.在某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:(1)P(A),P(B),P

    7、(C);(2)1张奖券的中奖概率;(3)1张奖券不中特等奖,且不中一等奖的概率.解:(1)由题意可知P(A)=11000,P(B)=101000=1100,P(C)=501000=120.(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”为事件M,则M=ABC.A,B,C两两互斥,P(M)=P(ABC)=P(A)+P(B)+P(C)=1+10+501000=611000.故1张奖券的中奖概率为611000.(3)设“1张奖券不中特等奖,且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,故P(N)=1-P(AB)=1-11000+1100=9891000

    8、,即1张奖券不中特等奖,且不中一等奖的概率为9891000.能力提升10.空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级,050为优;51100为良;101150为轻度污染;151200为中度污染;201300为重度污染;大于300为严重污染.一环保人士从当地某年的AQI记录数据中随机抽取10个,用茎叶图记录如图.根据该统计数据,估计此地该年AQI大于100的天数为.(该年为365天)答案:146解析:该样本中AQI大于100的频数是4,频率为25,由此估计此地该年AQI大于100的概率为25,故估计此地该年AQI大于

    9、100的天数为36525=146.11.假设甲、乙两种品牌的同类产品在某地区市场上的销售量相等,为了了解它们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进行测试,统计结果如图所示.(1)估计甲品牌产品寿命小于200 h的概率;(2)在这两种品牌产品中,某个产品已使用了200 h,试估计该产品是甲品牌的概率.解:(1)甲品牌产品寿命小于200h的频率为5+20100=14,用频率估计概率,可得甲品牌产品寿命小于200h的概率为14.(2)根据频数分布直方图可得寿命不低于200h的两种品牌产品共有75+70=145(个),其中甲品牌产品有75个,所以在样本中,寿命不低于200h的产品是甲

    10、品牌的频率是75145=1529.据此估计已使用了200h的该产品是甲品牌的概率为1529.12.袋中有除颜色外其他完全相同的12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,分别求得到黑球、黄球和绿球的概率各是多少.解:(方法一)从袋中选取一个球,记事件“摸到红球”“摸到黑球”“摸到黄球”“摸到绿球”分别为A,B,C,D,则P(A)=13,P(BC)=P(B)+P(C)=512,P(CD)=P(C)+P(D)=512,P(BCD)=P(B)+P(C)+P(D)=1-P(A)=1-13=23,解得P(B)

    11、=14,P(C)=16,P(D)=14,因此得到黑球、黄球、绿球的概率分别是14,16,14.(方法二)设红球有n个,则n12=13,即n=4,即红球有4个.又得到黑球或黄球的概率是512,所以黑球和黄球共有5个.又总球数是12,所以绿球有12-4-5=3个.又得到黄球或绿球的概率也是512,所以黄球和绿球共有5个,而绿球有3个,所以黄球有5-3=2个.所以黑球有12-4-3-2=3个.因此得到黑球、黄球、绿球的概率分别是312=14,212=16,312=14.13.电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数1405030020

    12、0800510好评率0.40.20.150.250.20.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)解:(1)由题意知,样本中电影的总部数是140+50+300+200+800+

    13、510=2000.第四类电影中获得好评的电影部数是2000.25=50,故所求概率为502000=0.025.(2)设“随机选取1部电影,这部电影没有获得好评”为事件B.没有获得好评的电影共有1400.6+500.8+3000.85+2000.75+8000.8+5100.9=1628(部).由古典概型概率公式得P(B)=16282000=0.814.(3)第五类电影的好评率增加0.1,第二类电影的好评率减少0.1.高考预测14.某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(单位:吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价

    14、收费.为了了解居民用水情况,通过抽样,获得了某年100名居民每人的月均用水量(单位:吨),将数据按照0,0.5),0.5,1),4,4.5分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准x.估计x的值,并说明理由.解:(1)由频率分布直方图知,月均用水量在0,0.5)中的频率为0.080.5=0.04,同理,在0.5,1),1.5,2),2,2.5),3,3.5),3.5,4),4,4.5)中的频率分别为0.08,0.20,0.26,0.06

    15、,0.04,0.02.由0.04+0.08+0.5a+0.20+0.26+0.5a+0.06+0.04+0.02=1,解得a=0.30.(2)由(1),100名居民每人月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计全市30万居民中月均用水量不低于3吨的人数为3000000.12=36000.(3)因为前6组的频率之和为0.04+0.08+0.15+0.20+0.26+0.15=0.880.85,而前5组的频率之和为0.04+0.08+0.15+0.20+0.26=0.730.85,所以2.5x3.由0.3(x-2.5)=0.85-0.73,解得x=2.9.所以,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年高考数学一轮复习 考点规范练60 随机事件的概率(含解析)新人教A版.docx
    链接地址:https://www.ketangku.com/wenku/file-517644.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1