分享
分享赚钱 收藏 举报 版权申诉 / 33

类型2022-2023学年度人教版九年级数学上册第二十二章二次函数章节训练试题(详解版).docx

  • 上传人:a****
  • 文档编号:641368
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:33
  • 大小:589.03KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 度人 九年级 数学 上册 第二十二 二次 函数 章节 训练 试题 详解
    资源描述:

    1、人教版九年级数学上册第二十二章二次函数章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,抛物线与抛物线交于点,且它们分别与轴交于点、过点作轴的平行线,分别与两抛物线交于点、,则以下结论:无论取

    2、何值,总是负数;抛物线可由抛物线向右平移3个单位,再向下平移3个单位得到;当时,随着的增大,的值先增大后减小;四边形为正方形其中正确的是()ABCD2、已知二次函数的图像如图所示,有下列结论:;0;不等式0的解集为13,正确的结论个数是()A1B2C3D43、已知抛物线的对称轴在轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则的值是()A或2BC2D4、二次函数yx2+bx的对称轴为直线x2,若关于x的一元二次方程x2+bxt0(t为实数)在1x6的范围内有解,则t的取值范围是()A5t12B4t5C4t5D4t125、已知二次函数yax2

    3、bxc,其中a0,若函数图象与x轴的两个交点均在负半轴,则下列判断错误的是()Aabc0Bb0Cc0Dbc06、下表中列出的是一个二次函数的自变量x与函数y的几组对应值:-20136-4-6-4下列各选项中,正确的是A这个函数的图象开口向下B这个函数的图象与x轴无交点C这个函数的最小值小于-6D当时,y的值随x值的增大而增大7、二次函数yax2bxc的图象过点(1,0),对称轴为直线x2,若a0,则下列结论错误的是()A当x2时,y随着x的增大而增大B(ac)2b2C若A(x1,m)、B(x2,m)是抛物线上的两点,当xx1x2时,ycD若方程a(x1)(5x)1的两根为x1、x2,且x1x2

    4、,则1x15x28、如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD,设AB边长为x米,BC的长y米,菜园的面积为S(单位:平方米) 当x在一定范围内变化时,y和S都随x的变化而变化,则y与x,S与x满足的函数关系分别是()A一次函数关系,二次函数关系B反比例函数关系,二次函数关系C一次函数关系,反比例函数关系D反比例函数关系,一次函数关系9、关于的一元二次方程没有实数根,抛物线的顶点在()A第一象限B第二象限C第三象限D第四象限10、如图,已知点M为二次函数图象的顶点,直线分别交x轴,y轴于点A,B点M在内,若点,都在二次函数图象上,则,的大小关系是()ABCD

    5、第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知二次函数yx2bxc的顶点在x轴上,点A(m1,n)和点B(m3,n)均在二次函数图象上,求n的值为_2、在平面直角坐标系中,已知和是抛物线上的两点,将抛物线的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为_3、在平面直角坐标系中,抛物线yx2的图象如图所示已知A点坐标为(1,1),过点A作AA1x轴交抛物线于点A1,过点A1作A1A2OA交抛物线于点A2,过点A2作A2A3x轴交抛物线于点A3,过点A3作A3A4OA交抛物线于点A4,依次进行下去,则点A2021的坐标为_4、如果二次

    6、函数的图像在它的对称轴右侧部分是上升的,那么的取值范围是_.5、如图,二次函数yax2+bx+c的图象经过点A(3,0),B(1,0),与y轴交于点C下列结论:abc0;3ac0;当x0时,y随x的增大而增大;对于任意实数m,总有abam2bm其中正确的是 _(填写序号)三、解答题(5小题,每小题10分,共计50分)1、如图,抛物线yax2+bx+c(a0)的图象经过A(1,0),B(3,0),C(0,6)三点(1)求抛物线的解析式(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,直线BE交AD于点E,若直线BE将ABD的面积分为1:2两部分,求点E的坐标(3)P为抛

    7、物线上的一动点,Q为对称轴上动点,抛物线上是否存在一点P,使A、D、P、Q为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由2、已知关于的二次函数(1)求证:不论为何实数,该二次函数的图象与轴总有两个公共点;(2)若,两点在该二次函数的图象上,直接写出与的大小关系;(3)若将抛物线沿轴翻折得到新抛物线,当时,新抛物线对应的函数有最小值3,求的值3、某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元(1)求甲、乙两种商品每箱各盈利多少元?(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利

    8、不变的前提下,平均每天可卖出100箱如调整价格,每降价1元,平均每天可以多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?4、如图,在矩形ABCD中,AB=8,BC=10,点M是BC边上的动点,点M从点B出发,运动到点C停止,N是CD边上一动点,在运动过程中,始终保持AMMN,设BM=x,CN=y(1)直接写出y与x的函数关系式,并写出自变量x的取值范围_;(2)先完善表格,然后在平面直角坐标系中利用描点法画出此抛物线直接写出m=_,x.2345678.y.23m32.(3)结合图象,指出M、N在运动过程中,当CN达到最大值时,BM的值是_;并写出在整个运动过程中,点N运动的总

    9、路程_5、某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件设每件商品的售价x元(x为整数),每个月的销售量为y件(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式-参考答案-一、单选题1、B【解析】【分析】根据非负数的相反数或者直接由图像判断即可;先求抛物线的解析式,再根据抛物线的顶点坐标,判断平移方向和平移距离即可判断;先根据题意得出时,观察图像可知,然后计算,进而根据一次函数的

    10、性质即可判断;分别计算出的坐标,根据正方形的判定定理进行判断即可【详解】,无论取何值,总是负数,故正确;抛物线与抛物线交于点,即,解得,抛物线,抛物线的顶点,抛物线的顶点为,将向右平移3个单位,再向下平移3个单位即为,即将抛物线向右平移3个单位,再向下平移3个单位可得到抛物线,故正确;,将代入抛物线,解得,将代入抛物线,解得,从图像可知抛物线的图像在抛物线图像的上方,当,随着的增大,的值减小,故不正确;设与轴交于点,由可知,当时,即,四边形是平行四边形,四边形是正方形,故正确,综上所述,正确的有,故选:B【考点】本题考查了二次函数图像与性质,一次函数的性质,平移,正方形的判定定理,解题的关键是

    11、综合运用以上知识2、A【解析】【分析】根据抛物线的开口方向、于x轴的交点情况、对称轴的知识可判的正误,再根据函数图象的特征确定出函数的解析式,进而确定不等式,最后求解不等式即可判定【详解】解:抛物线的开口向上,a0,故正确;抛物线与x轴没有交点0,故错误由抛物线可知图象过(1,1),且过点(3,3)8a+2b=24a+b=1,故错误;由抛物线可知顶点坐标为(1,1),且过点(3,3)则抛物线与直线y=x交于这两点0可化为,根据图象,解得:1x3故错误故选A【考点】本题主要考查了二次函数图象的特征以及解不等式的相关知识,灵活运用二次函数图象的特征成为解答本题的关键3、B【解析】【分析】根据二次函

    12、数图象左加右减,上加下减的平移规律进行解答即可【详解】解:函数向右平移3个单位,得:;再向上平移1个单位,得:+1,得到的抛物线正好经过坐标原点+1即解得:或抛物线的对称轴在轴右侧00故选:B【考点】此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减4、D【解析】【分析】根据对称轴方程可得b=-4,可得二次函数解析式,可得顶点坐标为(2,-4),关于x的一元二次方程x2+bxt0的解为二次函数yx24x与直线yt的交点的横坐标,当1x6时,4t12,进而求解;【详解】对称轴为直线x2,b4,二次函数解析式为yx24x,顶点坐标为(2,-4),1x6,当x=-1时,y=5,

    13、当x=6时,y=12,二次函数y的取值范围为4t12,关于x的一元二次方程x2+bxt0的解为yx24x与直线yt的交点的横坐标,4t12,故选:D【考点】本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键5、B【解析】【分析】根据函数图象与x轴的两个交点均在负半轴,可得抛物线的对称轴与x轴负半轴相交,可以判断a,b,c的符号,进而可得结论【详解】解:因为函数图象与x轴的两个交点均在负半轴,所以抛物线的对称轴与x轴负半轴相交,所以0,c0,因为a0,所以b0,因为c0,所以abc0,bc0,故选:B【考点】本题考查了二次

    14、函数图象与系数的关系,解决本题的关键是掌握二次函数图象与系数的关系6、C【解析】【分析】利用表中的数据,求得二次函数的解析式,再配成顶点式,根据二次函数的性质逐一分析即可判断【详解】解:设二次函数的解析式为,依题意得:,解得:,二次函数的解析式为=,这个函数的图象开口向上,故A选项不符合题意;,这个函数的图象与x轴有两个不同的交点,故B选项不符合题意;,当时,这个函数有最小值,故C选项符合题意;这个函数的图象的顶点坐标为(,),当时,y的值随x值的增大而增大,故D选项不符合题意;故选:C【考点】本题主要考查了待定系数法求二次函数的解析式以及二次函数的性质,利用二次函数的性质解答是解题关键7、D

    15、【解析】【分析】根据二次函数的性质即可判断A;根据对称轴得到b4a,经过点(1,0)得到c5a,从而求得a+c4a,即可判断B;由抛物线的对称性得到,结合xx1+x2,即可判断C;利用二次函数与一元二次方程的关系即可判断D【详解】解:二次函数yax2+bx+c中,a0,对称轴为直线x2,当x2时,y随着x的增大而增大,故A正确;2,b4a,二次函数yax2+bx+c的图象过点(1,0),ab+c0,即a+4a+c0,c5a,a+c4a,(a+c)2b2,故B正确;A(x1,m)、B(x2,m)是抛物线上的两点,抛物线对称轴,2xx1+x2,xx1+x2,2xx,x0,此时,yax2+bx+cc

    16、,故C正确;抛物线的对称轴为直线x2,图象与x轴交于(1,0),抛物线x轴的另一个交点是(5,0),抛物线与直线y1的交点横坐标x11,x25,如图,方程a(x+1)(x5)1的两根为x1和x2,且x1x2,则1x1x25,故D错误故选:D【考点】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,抛物线与x轴的交点,熟练掌握二次函数的性质是解题的关键8、A【解析】【分析】根据题意求得y和S与x的函数关系式,然后由函数关系式可直接进行判别即可【详解】解:由题意可知:,则,即,y与x满足一次函数关系菜园的面积:,S与x满足二次函数的关系故选A【考点】本题主要考查一次函

    17、数与二次函数的应用,熟练掌握一次函数与二次函数的应用是解题的关键9、B【解析】【分析】求出抛物线的对称轴-1,可知顶点在y轴的基侧,根据没有实数根,可知开口向上的与x轴没有交点,据此即可判断抛物线在第二象限【详解】解:抛物线的对称轴,可知抛物线的顶点在y轴左侧,又关于x的一元二次方程没有实数根,开口向上的与x轴没有交点,抛物线的顶点在第二象限故选:B【考点】本题考查了抛物线与x轴的交点个数与相应一元二次方程的解的个数的关系,熟悉二次函数的性质是解题的关键10、A【解析】【分析】根据题意确定出的取值范围,然后根据二次函数的性质即可得出,的大小关系【详解】解:点M为二次函数图象的顶点,点,直线分别

    18、交x轴,y轴于点A,B,令,解得:,令,解得:,点M在内,解得:,抛物线开口向下,与对称轴距离越近,其值越大;与对称轴距离越远,其值越小;对称轴在之间,比距离对称轴更近,故选:A【考点】本题考查了二次函数的性质,一次函数的图像与坐标轴的交点问题,熟知一次函数的与二次函数的性质是解本题的关键二、填空题1、4【解析】【分析】由A、B坐标可得对称轴,由顶点在x轴上可得,求得b2(m+1),c(m+1)2,即可得出yx22(m+1)x+(m+1)2,把A的坐标代入即可求得n的值【详解】解:点A(m1,n)和点B(m+3,n)均在二次函数yx2+bx+c图象上,b2(m+1),二次函数yx2+bx+c的

    19、顶点在x轴上,b24c0,2(m+1)24c0,c(m+1)2,yx22(m+1)x+(m+1)2,把A的坐标代入得,n(m1)22(m+1)(m1)+(m+1)24,故答案为:4【考点】本题考查了二次函数的性质,二次函数的顶点坐标,表示出b、c的值是解题的关键2、4【解析】【分析】通过A、B两点得出对称轴,再根据对称轴公式算出b,由此可得出二次函数表达式,从而算出最小值即可推出n的最小值【详解】A、B的纵坐标一样,A、B是对称的两点,对称轴,即,b=-4抛物线解析式为:抛物线顶点(2,-3)满足题意n的最小值为4,故答案为:4【考点】本题考查二次函数对称轴的性质,顶点式的变形及抛物线的平移,

    20、关键在于根据对称轴的性质从题意中判断出对称轴3、(-1011,10112)【解析】【分析】根据二次函数性质可得出点A1的坐标,求得直线A1A2为y=x+2,联立方程求得A2的坐标,即可求得A3的坐标,同理求得A4的坐标,即可求得A5的坐标,根据坐标的变化找出变化规律,即可找出点A2021的坐标【详解】解:A点坐标为(1,1),直线OA为y=x,A1(-1,1),A1A2OA,直线A1A2为y=x+2,解得或,A2(2,4),A3(-2,4),A3A4OA,直线A3A4为y=x+6,解,得或,A4(3,9),A5(-3,9),A2021(-1011,10112),故答案为(-1011,10112

    21、)【考点】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键4、【解析】【分析】由题意得:二次函数的图像开口向上,进而,可得到答案.【详解】二次函数的图像在它的对称轴右侧部分是上升的,二次函数的图像开口向上,.故答案是:【考点】本题主要考查二次函数图象和二次函数的系数之间的关系,掌握二次函数的系数的几何意义,是解题的关键.5、#【解析】【分析】根据抛物线的对称轴,开口方向,与轴的交点位置,即可判断,根据二次函数yax2+bx+c的图象经过点A(3,0),B(1,0),即可求得对称轴,以及当时,进而可以判断,根据顶点求得函数的最大值,即可判

    22、断【详解】解:抛物线开口向下,对称轴,抛物线与轴交于正半轴,故正确,二次函数yax2+bx+c的图象经过点A(3,0),B(1,0),对称轴为,则,当,故不正确,由函数图象以及对称轴为,可知,当时,随的增大而增大,故不正确,对称轴为,则当时,取得最大值,对于任意实数m,总有,即,故正确故答案为:【考点】本题考查了二次函数图象的性质,数形结合是解题的关键三、解答题1、(1)y=2x28x+6;(2)点E(2,2)或(3,4);(3)存在,当点P坐标为(5,16)或(1,16)或(3,0)时,使A、D、P、Q为顶点的四边形为平行四边形【解析】【分析】(1)设抛物线解析式为:ya(x1)(x3),把

    23、点C坐标代入解析式,可求解;(2)先求出点M,点N坐标,利用待定系数法可求AD解析式,联立方程组可求点D坐标,可求SABD266,设点E(m,2m2),分两种情况讨论,利用三角形面积公式可求解;(3)分两种情况讨论,利用平行四边形的性质可求解【详解】解:(1)抛物线yax2+bx+c(a0)的图象经过A(1,0),B(3,0),设抛物线解析式为:ya(x1)(x3),抛物线ya(x1)(x3)(a0)的图象经过点C(0,6),6a(01)(03),a2,抛物线解析式为:y2(x1)(x3)2x28x+6;(2)y2x28x+62(x2)22,顶点M的坐标为(2,2),抛物线的顶点M与对称轴l上

    24、的点N关于x轴对称,点N(2,2),设直线AN解析式为:ykx+b,由题意可得:,解得:,直线AN解析式为:y2x2,联立方程组得:,解得:,点D(4,6),SABD266,设点E(m,2m2),直线BE将ABD的面积分为1:2两部分,SABESABD2或SABESABD4,2(2m2)2或2(2m2)4,m2或3,点E(2,2)或(3,4);(3)若AD为平行四边形的边,以A、D、P、Q为顶点的四边形为平行四边形,ADPQ,xDxAxPxQ或xDxAxQxP,xP41+25或xP24+11,点P坐标为(5,16)或(1,16);若AD为平行四边形的对角线,以A、D、P、Q为顶点的四边形为平行

    25、四边形,AD与PQ互相平分,xP3,点P坐标为(3,0),综上所述:当点P坐标为(5,16)或(1,16)或(3,0)时,使A、D、P、Q为顶点的四边形为平行四边形【考点】本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,平行四边形的性质,利用分类讨论思想解决问题是本题的关键2、 (1)见解析(2)(3)的值为1或-5【解析】【分析】()计算判别式的值,得到,即可判定;()计算二次函数的对称轴为:直线,利用当抛物线开口向上时,谁离对称轴远谁大判断即可;()先得到抛物线沿y轴翻折后的函数关系式,再利用对称轴与取值范围的位置分类讨论即可(1)证明:令,则不论为何实数,方程有两个不相等

    26、的实数根无论为何实数,该二次函数的图象与轴总有两个公共点(2)解:二次函数的对称轴为:直线,抛物线开口向上抛物线上的点离对称轴越远对应的函数值越大点到对称轴的距离为:1点到对称轴的距离为:2(3)解:抛物线沿轴翻折后的函数解析式为该抛物线的对称轴为直线若,即,则当时,有最小值解得,若,即,则当时,有最小值-1不合题意,舍去若,则当时,有最小值解得,综上,的值为1或-5【考点】本题考查了抛物线与x轴的交点以及二次函数的最值问题,利用一元二次方程根的判别式判断抛物线与x轴的交点情况;熟练掌握二次函数的最值情况、根据对称轴与取值范围的位置关系来确定二次函数的最值是解本题的关键3、(1)甲种商品每箱盈

    27、利15元,则乙种商品每箱盈利10元;(2)当降价5元时,该商场利润最大,最大利润是2000元【解析】【分析】(1)设甲种商品每箱盈利x元,则乙种商品每箱盈利(x-5)元,根据题意列出方程,解方程即可得出结论;(2)设甲种商品降价a元,则每天可多卖出20a箱,利润为w元,根据题意列出函数解析式,根据二次函数的性质求出函数的最值【详解】解:(1)设甲种商品每箱盈利x元,则乙种商品每箱盈利(x-5)元,根据题意得: ,整理得:x2-18x+45=0,解得:x=15或x=3(舍去),经检验,x=15是原分式方程的解,符合实际,x-5=15-5=10(元),答:甲种商品每箱盈利15元,则乙种商品每箱盈利

    28、10元;(2)设甲种商品降价a元,则每天可多卖出20a箱,利润为w元,由题意得:w=(15-a)(100+20a)=-20a2+200a+1500=-20(a-5)2+2000,a=-20,当a=5时,函数有最大值,最大值是2000元,答:当降价5元时,该商场利润最大,最大利润是2000元【考点】本题考查了分式方程及二次函数的应用,解题的关键是理解题意,找出等量关系,准确列出分式方程及函数关系式4、 (1)(2),画图见解析(3)5,【解析】【分析】(1)连接AN,根据题意可知,利用勾股定理分别在、和中,用x、y表示出、和再在中,根据勾股定理即可列出关于x、y的等式,整理即可最后根据M从点B出

    29、发,运动到点C停止,即得出x的取值范围;(2)将将x=5代入(1)所求解析式,求出y的值,即为m的值;用描点法画图即可;(3)根据二次函数的性质即可解答(1)解:如图,连接AN,根据题意可知,在中,即,在中,即,在中,即,又AMMN,即在中,整理,得:M从点B出发,运动到点C停止,即y与x的函数关系式为故答案为:;(2)解:将x=5代入,得:,对于,当x=0时,当时,描点法画出此抛物线如下:(3)解:,当时,y有最大值即当CN达到最大值时,BM的值是5,在整个运动过程中,点N运动的总路程是故答案为:5,【考点】本题考查矩形的性质,勾股定理,二次函数的图象和性质根据题意结合勾股定理得出关于x、y

    30、的等式是解题关键5、(1);(2)【解析】【分析】(1)根据题意先分类讨论,当售价超过50元但不超过80元时,上涨的价格是元,就少卖件,用原来的210件去减得到销售量;当售价超过80元,超过80的部分是元,就少卖件,用原来的210件先减去售价从50涨到80之间少卖的30件再减去得到最终的销售量(2)根据利润=(售价-成本)销量,现在的单件利润是元,再去乘以(1)中两种情况下的销售量,得到销售利润关于售价的式子【详解】(1)当时,即当时,即,则(2)由利润=(售价-成本)销售量可以列出函数关系式为【考点】本题考查二次函数实际应用中的利润问题,关键在于根据题意列出销量与售价之间的一次函数关系式以及熟悉求利润的公式,需要注意本题要根据售价的不同范围进行分类讨论,结果要写成分段函数的形式,还要标上的取值范围

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度人教版九年级数学上册第二十二章二次函数章节训练试题(详解版).docx
    链接地址:https://www.ketangku.com/wenku/file-641368.html
    相关资源 更多
  • 全国通用版2022版高考数学大二轮复习考前强化练2客观题综合练B理.docx全国通用版2022版高考数学大二轮复习考前强化练2客观题综合练B理.docx
  • 全国通用版2022版高考地理二轮复习综合升级练区域可持续发展.docx全国通用版2022版高考地理二轮复习综合升级练区域可持续发展.docx
  • 全国通用版2022版高考地理二轮复习专题四水体运动和流域综合开发第9讲水循环和洋流练习.docx全国通用版2022版高考地理二轮复习专题四水体运动和流域综合开发第9讲水循环和洋流练习.docx
  • 全国通用版2022版高考地理二轮复习专题五自然地理环境的整体性和差异性第12讲自然地理环境的差异性练习.docx全国通用版2022版高考地理二轮复习专题五自然地理环境的整体性和差异性第12讲自然地理环境的差异性练习.docx
  • 全国通用版2022版高考地理二轮复习专题三大气运动和天气气候第7讲常见天气系统练习.docx全国通用版2022版高考地理二轮复习专题三大气运动和天气气候第7讲常见天气系统练习.docx
  • 全国通用版2022版高考地理二轮复习专题一地理图表和地球运动第3讲地球运动的地理意义专题突破练3练习.docx全国通用版2022版高考地理二轮复习专题一地理图表和地球运动第3讲地球运动的地理意义专题突破练3练习.docx
  • 全国通用版2022版高考地理二轮复习专题一地理图表和地球运动第2讲统计图表的判读专题突破练2练习.docx全国通用版2022版高考地理二轮复习专题一地理图表和地球运动第2讲统计图表的判读专题突破练2练习.docx
  • 全国通用版2022版高考化学大二轮复习非选择题专项训练六有机合成与推断.docx全国通用版2022版高考化学大二轮复习非选择题专项训练六有机合成与推断.docx
  • 全国通用版2022版高考化学大二轮复习非选择题专项训练三化学反应原理.docx全国通用版2022版高考化学大二轮复习非选择题专项训练三化学反应原理.docx
  • 全国通用版2022版高考化学大二轮复习选择题专项训练四常见元素及其化合物.docx全国通用版2022版高考化学大二轮复习选择题专项训练四常见元素及其化合物.docx
  • 全国通用版2022版高考化学大二轮复习选择题专项训练十化学实验基础.docx全国通用版2022版高考化学大二轮复习选择题专项训练十化学实验基础.docx
  • 全国通用版2022版高考化学大二轮复习选择题专项训练五元素周期表及周期律.docx全国通用版2022版高考化学大二轮复习选择题专项训练五元素周期表及周期律.docx
  • 全国通用版2022年中考数学复习第四单元图形的初步认识与三角形第18讲相似三角形练习.docx全国通用版2022年中考数学复习第四单元图形的初步认识与三角形第18讲相似三角形练习.docx
  • 全国通用版2022年中考数学复习第四单元图形的初步认识与三角形第14讲三角形的基础知识练习.docx全国通用版2022年中考数学复习第四单元图形的初步认识与三角形第14讲三角形的基础知识练习.docx
  • 全国通用版2022年中考数学复习第四单元图形的初步认识与三角形方法技巧训练四解直角三角形中常见的基本模型练习.docx全国通用版2022年中考数学复习第四单元图形的初步认识与三角形方法技巧训练四解直角三角形中常见的基本模型练习.docx
  • 全国通用版2022年中考数学复习第四单元图形的初步认识与三角形方法技巧训练一与角平分线有关的基本模型练习.docx全国通用版2022年中考数学复习第四单元图形的初步认识与三角形方法技巧训练一与角平分线有关的基本模型练习.docx
  • 全国通用版2022年中考数学复习第六单元圆第24讲与圆相关的计算练习.docx全国通用版2022年中考数学复习第六单元圆第24讲与圆相关的计算练习.docx
  • 全国通用版2022年中考数学复习第六单元圆滚动小专题七与圆有关的计算与证明练习.docx全国通用版2022年中考数学复习第六单元圆滚动小专题七与圆有关的计算与证明练习.docx
  • 全国通用版2022年中考数学复习第八单元统计与概率第27讲统计练习.docx全国通用版2022年中考数学复习第八单元统计与概率第27讲统计练习.docx
  • 全国通用版2022年中考数学复习第五单元四边形方法技巧训练五与中点有关的基本模型练习.docx全国通用版2022年中考数学复习第五单元四边形方法技巧训练五与中点有关的基本模型练习.docx
  • 全国通用版2022年中考数学复习第二单元方程与不等式第8讲一元一次不等式组练习.docx全国通用版2022年中考数学复习第二单元方程与不等式第8讲一元一次不等式组练习.docx
  • 全国通用版2022年中考数学复习第二单元方程与不等式第7讲分式方程练习.docx全国通用版2022年中考数学复习第二单元方程与不等式第7讲分式方程练习.docx
  • 全国通用版2022年中考数学复习第二单元方程与不等式第6讲一元二次方程练习.docx全国通用版2022年中考数学复习第二单元方程与不等式第6讲一元二次方程练习.docx
  • 全国通用版2022年中考数学复习第三单元函数第9讲函数的基础知识练习.docx全国通用版2022年中考数学复习第三单元函数第9讲函数的基础知识练习.docx
  • 全国通用版2022年中考数学复习第三单元函数第11讲反比例函数练习.docx全国通用版2022年中考数学复习第三单元函数第11讲反比例函数练习.docx
  • 全国通用版2022年中考数学复习第七单元图形变化滚动小专题八与图形变换有关的简单计算与证明练习.docx全国通用版2022年中考数学复习第七单元图形变化滚动小专题八与图形变换有关的简单计算与证明练习.docx
  • 全国通用版2022年中考数学复习第一单元数与式第1讲实数及其运算练习.docx全国通用版2022年中考数学复习第一单元数与式第1讲实数及其运算练习.docx
  • 全国通用版2022年中考数学复习基础题型滚动组合卷四.docx全国通用版2022年中考数学复习基础题型滚动组合卷四.docx
  • 全国通用版2022年中考数学复习基础题型滚动组合卷二.docx全国通用版2022年中考数学复习基础题型滚动组合卷二.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1