分享
分享赚钱 收藏 举报 版权申诉 / 29

类型2022-2023学年度人教版九年级数学上册第二十四章圆专项训练试题(详解).docx

  • 上传人:a****
  • 文档编号:641507
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:29
  • 大小:489.62KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 度人 九年级 数学 上册 第二 十四 专项 训练 试题 详解
    资源描述:

    1、人教版九年级数学上册第二十四章圆专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知长方形中,圆B的半径为1,圆A与圆B内切,则点与圆A的位置关系是()A点C在圆A外,点D在圆A内B点C在圆

    2、A外,点D在圆A外C点C在圆A上,点D在圆A内D点C在圆A内,点D在圆A外2、下列语句,错误的是()A直径是弦B相等的圆心角所对的弧相等C弦的垂直平分线一定经过圆心D平分弧的半径垂直于弧所对的弦3、如图,在ABCD中,为的直径,O和相切于点E,和相交于点F,已知,则的长为()ABCD24、下列说法中,正确的是()A长度相等的弧是等弧B平分弦的直径垂直于弦,并且平分弦所对的两条弧C经过半径并且垂直于这条半径的直线是圆的切线D在同圆或等圆中90的圆周角所对的弦是这个圆的直径5、如图是一圆锥的侧面展开图,其弧长为,则该圆锥的全面积为 A60B85C95D1696、已知一个三角形的三边长分别为5、7、

    3、8,则其内切圆的半径为()ABCD7、下列说法正确的是()近似数精确到十分位;在,中,最小的是;如图所示,在数轴上点所表示的数为;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;如图,在内一点到这三条边的距离相等,则点是三个角平分线的交点A1B2C3D48、一个商标图案如图中阴影部分,在长方形中,以点为圆心,为半径作圆与的延长线相交于点,则商标图案的面积是()ABCD9、如图1,一个扇形纸片的圆心角为90,半径为6如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A6B69C12D10、一个点到圆的最大

    4、距离为11 cm,最小距离为5 cm,则圆的半径为()A16cm或6 cmB3cm或8 cmC3 cmD8 cm第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在正五边形ABCDE中,AC与BE相交于点F,则AFE的度数为_2、如图,以为直径作半圆,圆心为点;以点为圆心,为半径作,过点作的平行线交两弧于点、,则阴影部分的面积是_.3、如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24,则正六边形的边长为_4、如图,A、D是O上的两点,BC是直径,若D32,则OAC_度5、如图,在O中,CD是直径,弦ABCD,垂足为E,连

    5、接BC,若AB=cm,则圆O的半径为_cm三、解答题(5小题,每小题10分,共计50分)1、【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形,请你用圆规和无刻度的直尺过圆心作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段,请你用圆规和无刻度的直尺作一个以为斜边的等腰直角三角形;【问题再解】如图3,已知扇形,请你用圆规和无刻度的直尺作一条以点为圆心的圆弧,使扇形的面积被这条圆弧平分(友情提醒:以上作图均不写作法,但需保留作图痕迹)2、如图,AB是O的直径,弦CDAB,垂足为E,如果AB10,CD8,求线段AE的长3、抛物线y

    6、ax2+2x+c与x轴交于A(1,0)、B两点,与y轴交于点C(0,3),点D(m,3)在抛物线上(1)求抛物线的解析式;(2)如图1,连接BC、BD,点P在对称轴左侧的抛物线上,若PBCDBC,求点P的坐标;(3)如图2,点Q为第四象限抛物线上一点,经过C、D、Q三点作M,M的弦QFy轴,求证:点F在定直线上4、已知:如图,ABC中,ABAC,ABBC求作:线段BD,使得点D在线段AC上,且CBDBAC作法:以点A为圆心,AB长为半径画圆;以点C为圆心,BC长为半径画弧,交A于点P(不与点B重合);连接BP交AC于点D线段BD就是所求作的线段(1)使用直尺和圆规,依作法补全图形(保留作图痕迹

    7、);(2)完成下面的证明证明:连接PCABAC,点C在A上点P在A上,CPBBAC( )(填推理的依据)BCPC,CBD ( )(填推理的依据)CBDBAC5、如图,以RtABC的AC边为直径作O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF和AD(1)求证:EF是O的切线;(2)若O的半径为2,EAC60,求AD的长-参考答案-一、单选题1、C【解析】【分析】根据内切得出圆A的半径,再判断点D、点E到圆心的距离即可【详解】圆A与圆B内切,圆B的半径为1圆A的半径为55点D在圆A内在RtABC中,点C在圆A上故选:C【考点】本题考查点与圆的位置关系、圆与圆的位

    8、置关系、勾股定理,熟练掌握点与圆的位置关系是关键2、B【解析】【分析】将每一句话进行分析和处理即可得出本题答案.【详解】A.直径是弦,正确.B.在同圆或等圆中,相等的圆心角所对的弧相等,相等的圆心角所对的弧相等,错误.C.弦的垂直平分线一定经过圆心,正确.D.平分弧的半径垂直于弧所对的弦,正确.故答案选:B.【考点】本题考查了圆中弦、圆心角、弧度之间的关系,熟练掌握该知识点是本题解题的关键.3、C【解析】【分析】首先求出圆心角EOF的度数,再根据弧长公式,即可解决问题【详解】解:如图连接OE、OF,CD是O的切线,OECD,OED=90,四边形ABCD是平行四边形,C=60,A=C=60,D=

    9、120,OA=OF,A=OFA=60,DFO=120,EOF=360-D-DFO-DEO=30,的长故选:C【考点】本题考查切线的性质、平行四边形的性质、弧长公式等知识,解题的关键是求出圆心角的度数,记住弧长公式4、D【解析】【分析】根据切线的判定,圆的知识,可得答案【详解】解:A、在等圆或同圆中,长度相等的弧是等弧,故A错误;B、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,故B错误;C、经过半径的外端并且垂直于这条半径的直线是圆的切线,故C错误;D、在同圆或等圆中90的圆周角所对的弦是这个圆的直径,故D正确;故选D【考点】本题考查了切线的判定及圆的知识,利用圆的知识及切线的判定

    10、是解题关键5、B【解析】【分析】设圆锥的底面圆的半径为r,扇形的半径为R,先根据弧长公式得到=10,解得R=12,再利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2r=10,解得r=5,然后计算底面积与侧面积的和【详解】设圆锥的底面圆的半径为r,扇形的半径为R,根据题意得=10,解得R=12,2r=10,解得r=5,所以该圆锥的全面积=52+1012=85故选B【考点】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长6、C【解析】【分析】先依据题意画出图形,如图(见解析),过点A作于D,利用勾股定理可求出AD的长,

    11、再根据三角形内切圆的性质、三角形的面积公式即可得出答案【详解】解:如图,内切圆O的半径为,切点为,则过点A作于D,设,则由勾股定理得:则,即解得,即又即解得则内切圆的半径为故选:C【考点】本题考查了三角形内切圆的性质、勾股定理等知识点,读懂题意,正确画出图形,并求出AD的长是解题关键7、B【解析】【分析】根据近似数的精确度定义,可判断;根据实数的大小比较,可判断;根据点在数轴上所对应的实数,即可判断;根据反证法的概念,可判断;根据角平分线的性质,可判断【详解】近似数精确到十位,故本小题错误;,最小的是,故本小题正确;在数轴上点所表示的数为,故本小题错误;用反证法证明命题“一个三角形最多有一个钝

    12、角”时,首先应假设“这个三角形中有两个钝角或三个钝角”,故本小题错误;在内一点到这三条边的距离相等,则点是三个角平分线的交点,故本小题正确故选B【考点】本题主要考查近似数的精确度定义,实数的大小比较,点在数轴上所对应的实数,反证法的概念,角平分线的性质,熟练掌握上述知识点,是解题的关键8、D【解析】【分析】根据题意作辅助线DE、EF使BCEF为一矩形,从图中可以看出阴影部分的面积=三角形的面积-(正方形的面积-扇形的面积),依据面积公式进行计算即可得出答案【详解】解:作辅助线DE、EF使BCEF为一矩形则SCEF=(8+4)42=24cm2,S正方形ADEF=44=16cm2,S扇形ADF=4

    13、cm2,阴影部分的面积=24-(16-4)=故选:D【考点】本题主要考查扇形的面积计算,解题的关键是作出辅助线并从图中看出阴影部分的面积是由哪几部分组成的9、A【解析】【分析】连接OD,如图,利用折叠性质得由弧AD、线段AC和CD所围成的图形的面积等于阴影部分的面积,AC=OC,则OD=2OC=6,CD=3,从而得到CDO=30,COD=60,然后根据扇形面积公式,利用由弧AD、线段AC和CD所围成的图形的面积=S扇形AOD-SCOD,进行计算即可【详解】解:连接OD,如图,扇形纸片折叠,使点A与点O恰好重合,折痕为CD,ACOC,OD2OC6,CD,CDO30,COD60,由弧AD、线段AC

    14、和CD所围成的图形的面积S扇形AODSCOD6,阴影部分的面积为6.故选A【考点】本题考查了扇形面积的计算:阴影面积的主要思路是将不规则图形面积转化为规则图形的面积记住扇形面积的计算公式也考查了折叠性质10、B【解析】【分析】最大距离与最小距离的和是直径;当点P在圆外时,点到圆的最大距离与最小距离的差是直径,由此得解【详解】当点P在圆内时,最近点的距离为5cm,最远点的距离为11cm,则直径是16cm,因而半径是8cm;当点P在圆外时,最近点的距离为5cm,最远点的距离为11cm,则直径是6cm,因而半径是3cm;故选B【考点】本题考查了点与圆的位置关系,利用线段的和差得出直径是解题关键,分类

    15、讨论,以防遗漏二、填空题1、72【解析】【分析】首先根据正五边形的性质得到AB=BC=AE,ABC=BAE=108,然后利用三角形内角和定理得BAC=BCA=ABE=AEB=(180108)2=36,最后利用三角形的外角的性质得到AFE=BAC+ABE=72【详解】五边形ABCDE为正五边形,AB=BC=AE,ABC=BAE=108,BAC=BCA=ABE=AEB=(180108)2=36,AFE=BAC+ABE=72,故答案为72【考点】本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键2、【解析】【分析】连接CE,如图,利用平行线的性质得COEEOB90,再利用勾股定理计算出OE,

    16、利用余弦的定义得到OCE60,然后根据扇形面积公式,利用S阴影部分S扇形BCESOCES扇形BOD进行计算即可【详解】解:连接CE,如图,ACBC,ACB90,ACOE,COEEOB90,OC1,CE2,OE,cosOCE,OCE60,S阴影部分S扇形BCESOCES扇形BOD,故答案为【考点】本题考查了扇形面积的计算:求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积3、6【解析】【分析】根据多边形的内角和公式求出扇形的圆心角,然后按扇形面积公式列方程求解计算即可【详解】解:正六边形的内角是120度,阴影部分的面积为24,设正六边形的边长为r, 解得r6(负根舍去)则正六边形的边长为

    17、6故答案为:【考点】本题考查的是正多边形与圆,扇形面积,掌握以上知识是解题的关键4、58【解析】【分析】根据D的度数,可以得到ABC的度数,然后根据BC是直径,从而可以得到BAC的度数,然后可以得到OCA的度数,再根据OA=OC,从而可以得到OAC的度数【详解】解:D=32,D=ABCABC=32BC是直径BAC=90BCA=90-ABC=90-32=58OCA=58OA=OCOAC=OCAOAC=58故答案为58【考点】本题考查了圆周角定理,圆心角、弧、弦的关系解题的关键是明确题意,利用数形结合的思想解答5、2【解析】【详解】解:如图,连接OB 在O中,CD是直径,弦ABCDAE=BE,且O

    18、BE是等腰直角三角形AB=cmBE=cmOB=2 cm故答案为:2【考点】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧也考查了圆周角定理和等腰直角三角形的性质三、解答题1、见解析【解析】【分析】【初步尝试】如图1,作AOB的角平分线所在直线即为所求;【问题联想】如图2,先作MN的线段垂直平分线交MN于点O,再以O为圆心MO为半径作圆,与垂直平分线的交点即为等腰直角三角形的顶点;【问题再解】如图3先作OB的线段垂直平分线交OB于点N,再以N为圆心NO为半径作圆, 与垂直平分线的交点为M,然后以O为圆心,OM为半径作圆与扇形所交的圆弧即为所求【详解】【初步尝试】如图所示,作A

    19、OB的角平分线所在直线OP即为所求;【问题联想】如图,先作MN的线段垂直平分线交MN于点O,再以O为圆心MO为半径作圆,与垂直平分线的交点即为等腰直角三角形的顶点;【问题再解】如图,先作OB的线段垂直平分线交OB于点N,再以N为圆心NO为半径作圆, 与垂直平分线的交点为M,然后以O为圆心,OM为半径作圆与扇形所交的圆弧CD即为所求【考点】本题考查了尺规作图,角平分线的性质,线段垂直平分线的性质,扇形的面积等知识,解决此类题目的关键是熟悉基本几何图形的性质,掌握基本作图方法2、2【解析】【分析】连接OC,利用直径AB=10,则OC=OA=5,再由CDAB,根据垂径定理得CE=DE=CD=4,然后

    20、利用勾股定理计算出OE,再利用AE=OA-OE进行计算即可【详解】连接OC,如图,AB是O的直径,AB10,OCOA5,CDAB,CEDECD84,在RtOCE中,OC5,CE4,OE3,AEOAOE532【考点】本题考查了垂径定理,掌握垂径定理及勾股定理是关键3、 (1)(2)P(,)(3)证明见解析【解析】【分析】(1)把A、C坐标代入可得关于a、c的二元一次方程组,解方程组求出a、c的值即可得答案;(2)如图,设BP与y轴交于点E,直线解析式为,根据(1)中解析式可知D、B两点坐标,可得CD/AB,利用ASA可证明DCBECB,可得CE=CD,即可得出点E坐标,利用待定系数法可得直线BP

    21、的解析式,联立直线BP与抛物线解析式求出交点坐标即可得答案;(3)如图,连接MD,MF,设Q(m,-m2+2m+3),F(m,t),根据CD、QF为M的弦可得圆心M是CD、QF的垂直平分线的交点,即可表示出点M坐标,根据MD=MF,利用两点间距离公式可得()2+(2-1)2=(m-1)2+()2,整理可得t=2,即可得答案(1)A(1,0)、C(0,3)在抛物线yax2+2x+c图象上,解得:,抛物线解析式为:(2)如图,设BP与y轴交于点E,直线解析式为,点D(m,3)在抛物线上,解得:,(与点C重合,舍去),D(2,3),CD/AB,CD=2,当y=0时,解得:,B(3,0),OB=OC,

    22、OCB=OBC=DCB=45,在DCB和ECB中,DCBECB,CE=CD=2,OE=OC-CE=1,E(0,1),解得:,直线BP的解析式为,联立直线BP与抛物线解析式得:,解得:(舍去),P(,)(3)如图,连接MD,MF,设Q(m,-m2+2m+3),F(m,t),CD、QF为M的弦,圆心M是CD、QF的垂直平分线的交点,C(0,3),D(2,3),QF/y轴,M(1,),MD=MF,2+(2-1)2=(m-1)2+()2,整理得:t=2,点F在定直线y=2上【考点】本题考查待定系数法求二次函数解析式、全等三角形的判定与性质、二次函数与一次函数的交点问题及圆的性质,综合性强,熟练掌握相关

    23、知识及定理是解题关键4、(1)见解析;(2)圆周角定理;,圆周角定理的推论【解析】【分析】(1)利用几何语言画出对应的几何图形;(2)先根据圆周角定理得到,再利用等腰三角形的性质得到,从而得到【详解】解:(1)如图,为所作;(2)证明:连接,如图,点在上点在上,(圆周角定理),(圆周角定理的推论)故答案为:圆周角定理;圆周角定理的推论【考点】本题考查了作图复杂作图、也考查了圆周角定理,解题的关键是掌握复杂作图的五种基本作图的基本方法,一般是结合了几何图形的性质和基本作图方法熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作5、(1)见解析;(2)AD【解析】【分析

    24、】(1)连接FO,可根据三角形中位线的性质可判断易证OFAB,然后根据直径所对的圆周角是直角,可得CEAE,进而知OFCE,然后根据垂径定理可得FECFCE,OECOCE,再通过RtABC可知OECFEC90,因此可证FE为O的切线;(2)在RtOCD中和RtACD中,分别利用勾股定理分别求出CD,AD的长即可 【详解】(1)证明:连接CE,如图所示:AC为O的直径,AEC90BEC90,点F为BC的中点,EFBFCF,FECFCE,OEOC,OECOCE,FCE+OCEACB90,FEC+OECOEF90,EF是O的切线(2)解:OAOE,EAC60,AOE是等边三角形AOE60,CODAOE60,O的半径为2,OAOC2在RtOCD中,OCD90,COD60,ODC30,OD2OC4,CD在RtACD中,ACD90,AC4,CDAD 【考点】本题主要考查直角三角形、全等三角形的判定与性质以及与圆有关的位置关系

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度人教版九年级数学上册第二十四章圆专项训练试题(详解).docx
    链接地址:https://www.ketangku.com/wenku/file-641507.html
    相关资源 更多
  • 北京市大兴区2021-2022学年七年级数学下学期期中试卷(附解析).docx北京市大兴区2021-2022学年七年级数学下学期期中试卷(附解析).docx
  • 北京市大兴区2021-2022学年七年级数学下学期期中试卷(含解析).docx北京市大兴区2021-2022学年七年级数学下学期期中试卷(含解析).docx
  • 北京市大兴区2019-2020学年高一下学期期末考试化学试题 WORD版含答案.docx北京市大兴区2019-2020学年高一下学期期末考试化学试题 WORD版含答案.docx
  • 北京市大兴区2019-2020学年高一下学期期末检测数学试题 WORD版含答案.docx北京市大兴区2019-2020学年高一下学期期末检测数学试题 WORD版含答案.docx
  • 北京市大兴区2016-2017学年第一学期期末检测题高一数学图片无答案.docx北京市大兴区2016-2017学年第一学期期末检测题高一数学图片无答案.docx
  • 北京市大兴一中度第一学期八年级数学期中考试试题.docx北京市大兴一中度第一学期八年级数学期中考试试题.docx
  • 北京市大兴一中20182019学年度第一学期八年级数学期中考试试题.docx北京市大兴一中20182019学年度第一学期八年级数学期中考试试题.docx
  • 北京市团结湖三中2020-2021学年高一上学期数学周测(六) WORD版缺答案.docx北京市团结湖三中2020-2021学年高一上学期数学周测(六) WORD版缺答案.docx
  • 北京市团结湖三中2020-2021学年高一上学期数学周测(五) WORD版缺答案.docx北京市团结湖三中2020-2021学年高一上学期数学周测(五) WORD版缺答案.docx
  • 北京市回民学校2018-2019学年下学期初二期中考试物理试题.docx北京市回民学校2018-2019学年下学期初二期中考试物理试题.docx
  • 北京市四十三中2020-2021学年高一上学期10月月考物理试题 WORD版含答案.docx北京市四十三中2020-2021学年高一上学期10月月考物理试题 WORD版含答案.docx
  • 北京市四中2022-2023学年高三生物上学期期中试卷(Word版附解析).docx北京市四中2022-2023学年高三生物上学期期中试卷(Word版附解析).docx
  • 北京市四中2022-2023学年高三上学期期中生物试题WORD版含解析.docx北京市四中2022-2023学年高三上学期期中生物试题WORD版含解析.docx
  • 北京市和平北路学校九年级化学上册 第七章《第二节 化学方程式》练习(无答案) 北京课改版.docx北京市和平北路学校九年级化学上册 第七章《第二节 化学方程式》练习(无答案) 北京课改版.docx
  • 北京市和平北路学校九年级化学上册 第七章《第二节 化学方程式》教学设计 北京课改版.docx北京市和平北路学校九年级化学上册 第七章《第二节 化学方程式》教学设计 北京课改版.docx
  • 北京市和平北路学校中考化学第二单元我们周围的空气知识点总结.docx北京市和平北路学校中考化学第二单元我们周围的空气知识点总结.docx
  • 北京市和平北路学校中考化学第二单元我们周围的空气复习无答案.docx北京市和平北路学校中考化学第二单元我们周围的空气复习无答案.docx
  • 北京市和平北路学校中考化学第三单元知识点总结.docx北京市和平北路学校中考化学第三单元知识点总结.docx
  • 北京市和平北路学校中考化学方程式精编.docx北京市和平北路学校中考化学方程式精编.docx
  • 北京市和平北路学校中考化学总复习第四章化学方程式无答案.docx北京市和平北路学校中考化学总复习第四章化学方程式无答案.docx
  • 北京市和平北路学校中考化学总复习第六章铁无答案.docx北京市和平北路学校中考化学总复习第六章铁无答案.docx
  • 北京市和平北路学校中考化学冲刺辅导专题三无答案.docx北京市和平北路学校中考化学冲刺辅导专题三无答案.docx
  • 北京市和平北路学校中考化学专题复习精选.docx北京市和平北路学校中考化学专题复习精选.docx
  • 北京市和平北路学校2022年九年级化学下册 酸碱盐知识点复习(无答案) 新人教版.docx北京市和平北路学校2022年九年级化学下册 酸碱盐知识点复习(无答案) 新人教版.docx
  • 北京市和平北路学校2022学年七年级英语上学期期中测试试题(无答案).docx北京市和平北路学校2022学年七年级英语上学期期中测试试题(无答案).docx
  • 北京市各地区2011-2012学年高二上学期考试政治试题(打包34份).docx北京市各地区2011-2012学年高二上学期考试政治试题(打包34份).docx
  • 北京市各区县期末及模拟试卷分类汇编—文言文专题.docx北京市各区县期末及模拟试卷分类汇编—文言文专题.docx
  • 北京市各区2022年中考数学二模试题分类汇编 证明题.docx北京市各区2022年中考数学二模试题分类汇编 证明题.docx
  • 北京市各区2022年中考数学二模试题分类汇编 统计.docx北京市各区2022年中考数学二模试题分类汇编 统计.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1