分享
分享赚钱 收藏 举报 版权申诉 / 27

类型2022-2023学年度人教版九年级数学上册第二十四章圆专题训练试卷(含答案详解).docx

  • 上传人:a****
  • 文档编号:641513
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:27
  • 大小:453.76KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 度人 九年级 数学 上册 第二 十四 专题 训练 试卷 答案 详解
    资源描述:

    1、人教版九年级数学上册第二十四章圆专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列多边形中,内角和最大的是()ABCD2、已知一个扇形的弧长为,圆心角是,则它的半径长为( )A6cmB5cmC4

    2、cmD3cm3、如图,四边形ABCD内接于O,点I是ABC的内心,AIC=124,点E在AD的延长线上,则CDE的度数为()A56B62C68D784、在平面直角坐标系中,O的半径为2,点A(1,)与O的位置关系是()A在O上B在O内C在O外D不能确定5、如图所示,MN为O的弦,N=52,则MON的度数为()A38B52C76D1046、如图,点A,B,C,D,E是O上5个点,若ABAO2,将弧CD沿弦CD翻折,使其恰好经过点O,此时,图中阴影部分恰好形成一个“钻戒型”的轴对称图形,则“钻戒型”(阴影部分)的面积为()AB43C44D7、如图,点O是ABC的内心,若A70,则BOC的度数是()

    3、A120B125C130D1358、如图所示,矩形纸片中,把它分割成正方形纸片和矩形纸片后,分别裁出扇形和半径最大的圆,恰好能作为一个圆锥的底面和侧面,则圆锥的表面积为()ABCD9、如图,是的直径,弦于点,则的长为()A4B5C8D1610、已知O中最长的弦为8cm,则O的半径为()cmA2B4C8D16第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在RtABC中,ACB=90,AC=6,BC=8,点D是AB的中点,以CD为直径作O,O分别与AC,BC交于点E,F,过点F作O的切线FG,交AB于点G,则FG的长为_2、如图,是的内接正三角形,点是圆心,点,分别

    4、在边,上,若,则的度数是_度3、如图,四边形是的外切四边形,且,则四边形的周长为_4、如图,以为直径作半圆,圆心为点;以点为圆心,为半径作,过点作的平行线交两弧于点、,则阴影部分的面积是_.5、如图,直线yx+6与x轴、y轴分别交于A、B两点,点P是以C(1,0)为圆心,1为半径的圆上一点,连接PA,PB,则PAB面积的最大值为_三、解答题(5小题,每小题10分,共计50分)1、下列每个正方形的边长为2,求下图中阴影部分的面积2、在平面直角坐标系中,平行四边形的顶点A,D的坐标分别是,其中(1)若点B在x轴的上方,求的长;,且证明:四边形是菱形;(2)抛物线经过点B,C对于任意的,当a,m的值

    5、变化时,抛物线会不同,记其中任意两条抛物线的顶点为(与不重合),则命题“对所有的a,b,当时,一定不存在的情形”是否正确?请说明理由3、如图,四边形ABCD内接于O,AB为O的直径,过点C作CEAD交AD的延长线于点E,延长EC,AB交于点F,ECDBCF(1)求证:CE为O的切线;(2)若DE1,CD3,求O的半径4、如图,在直角梯形ABCD中,ADBC,ABC=90,AB=12cm,AD=8cm,BC=22cm,AB为O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动P、Q分别从点A、C同时出发,当其中一个动点到达端点时,另

    6、一个动点也随之停止运动,设运动时间为t(s)(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,PQ与O相切?5、已知圆弧的半径为15厘米,圆弧的长度为,求圆心角的度数-参考答案-一、单选题1、D【解析】【分析】根据多边形内角和公式可直接进行排除选项【详解】解:A、是一个三角形,其内角和为180;B、是一个四边形,其内角和为360;C、是一个五边形,其内角和为540;D、是一个六边形,其内角和为720;内角和最大的是六边形;故选D【考点】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键2、A【解析】【分析】设扇形半径为rcm,根据扇形弧长公式列方程计算即可.【详解

    7、】设扇形半径为rcm,则=5,解得r=6cm.故选A.【考点】本题主要考查扇形弧长公式.3、C【解析】【分析】由点I是ABC的内心知BAC=2IAC、ACB=2ICA,从而求得B=180(BAC+ACB)=1802(180AIC),再利用圆内接四边形的外角等于内对角可得答案【详解】解:点I是ABC的内心,BAC=2IAC、ACB=2ICA,AIC=124,B=180(BAC+ACB)=1802(IAC+ICA)=1802(180AIC)=68,又四边形ABCD内接于O,CDE=B=68,故选:C【考点】本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质4、

    8、A【解析】【分析】根据点A的坐标,求出OA=2,根据点与圆的位置关系即可做出判断【详解】解:点A的坐标为(1,),由勾股定理可得:OA=,又O的半径为2,点A在O上故选:A【考点】本题考查了点和圆的位置关系,点和圆的位置关系是由点到圆心的距离和圆的半径间的大小关系确定的:(1)当时,点在圆外;(2)当时,点在圆上;(3)当时,点在圆内5、C【解析】【分析】根据半径相等得到OM=ON,则M=N=52,然后根据三角形内角和定理计算MON的度数【详解】OM=ON,M=N=52,MON=180-252=76故选C【考点】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆

    9、、等弧等)6、A【解析】【分析】连接CD、OE,根据题意证明四边形OCED是菱形,然后分别求出扇形OCD和菱形OCED以及AOB的面积,最后利用割补法求解即可【详解】解:连接CD、OE,由题意可知OCODCEED,弧弧,S扇形ECDS扇形OCD,四边形OCED是菱形,OE垂直平分CD,由圆周角定理可知CODCED120,CD222,ABOAOB2,AOB是等边三角形,SAOB22,S阴影2S扇形OCD2S菱形OCED+SAOB2(22)+2(2)+3,故选:A【考点】此题考查了菱形的性质和判定,等边三角形的性质,圆周角定理,求解圆中阴影面面积等知识,解题的关键是根据题意做出辅助线,利用割补法求

    10、解7、B【解析】【分析】利用内心的性质得OBCABC,OCBACB,再根据三角形内角和计算出OBC+OCB55,然后再利用三角形内角和计算BOC的度数【详解】解:O是ABC的内心,OB平分ABC,OC平分ACB,OBCABC,OCBACB,OBC+OCB(ABC+ACB)(180A)(18070)55,BOC180(OBC+OCB)18055125故选:B【考点】此题主要考查了三角形内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角8、B【解析】【分析】设圆锥的底面的半径为rcm,则DE2rcm,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面

    11、的周长得到2r,解方程求出r,然后求得直径即可【详解】解:设圆锥的底面的半径为rcm,则AE=BF=6-2r根据题意得2 r,解得r1,侧面积= ,底面积=所以圆锥的表面积=,故选:B【考点】本题综合考查有关扇形和圆锥的相关计算解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长正确对这两个关系的记忆是解题的关键9、C【解析】【分析】根据垂径定理得出CM=DM,再由已知条件得出圆的半径为5,在RtOCM中,由勾股定理得出CM即可,从而得出CD【详解】解:AB是O的直径,弦CDAB,CM=DM,AM=2

    12、,BM=8,AB=10,OA=OC=5,在RtOCM中,OM2+CM2=OC2,CM=4,CD=8故选:C【考点】本题考查了垂径定理,圆周角定理以及勾股定理,掌握定理的内容并熟练地运用是解题的关键10、B【解析】【分析】O最长的弦就是直径从而不难求得半径的长【详解】解:O中最长的弦为8cm,即直径为8cm,O的半径为4cm故选:B.【考点】本题考查弦,直径等知识,记住圆中的最长的弦就是直径是解题的关键二、填空题1、【解析】【分析】先利用勾股定理求出AB=10,进而求出CD=BD=5,再求出CF=4,进而求出DF=3,再判断出FGBD,利用面积即可得出结论【详解】如图,在RtABC中,根据勾股定

    13、理得,AB=10,点D是AB中点,CD=BD=AB=5,连接DF,CD是O的直径,CFD=90,BF=CF=BC=4,DF=3,连接OF,OC=OD,CF=BF,OFAB,OFC=B,FG是O的切线,OFG=90,OFC+BFG=90,BFG+B=90,FGAB,SBDF=DFBF=BDFG,FG=,故答案为.【考点】此题主要考查了直角三角形的性质,勾股定理,切线的性质,三角形的中位线定理,三角形的面积公式,判断出FGAB是解本题的关键2、120【解析】【分析】本题可通过构造辅助线,利用垂径定理证明角等,继而利用SAS定理证明三角形全等,最后根据角的互换结合同弧所对的圆周角等于圆心角的一半求解

    14、本题【详解】连接OA,OB,作OHAC,OMAB,如下图所示:因为等边三角形ABC,OHAC,OMAB,由垂径定理得:AH=AM,又因为OA=OA,故OAHOAM(HL)OAH=OAM又OA=OB,AD=EB,OAB=OBA=OAD,ODAOEB(SAS),DOA=EOB,DOE=DOA+AOE=AOE+EOB=AOB又C=60以及同弧,AOB=DOE=120故本题答案为:120【考点】本题考查圆与等边三角形的综合,本题目需要根据等角的互换将所求问题进行转化,构造辅助线是本题难点,全等以及垂径定理的应用在圆综合题目极为常见,圆心角、弧、圆周角的关系需熟练掌握3、48【解析】【分析】根据切线长定

    15、理得到AE=AH,BE=BF,CF=CG,DH=DG,得到AD+BC=AB+CD=24,根据四边形的周长公式计算,得到答案【详解】解:四边形ABCD是O的外切四边形,AE=AH,BE=BF,CF=CG,DH=DG,AD+BC=AB+CD=24,四边形ABCD的周长=AD+BC+AB+CD=24+24=48,故答案为:48【考点】本题考查了切线长定理,掌握从圆外一点引圆的两条切线,它们的切线长相等是解题的关键4、【解析】【分析】连接CE,如图,利用平行线的性质得COEEOB90,再利用勾股定理计算出OE,利用余弦的定义得到OCE60,然后根据扇形面积公式,利用S阴影部分S扇形BCESOCES扇形

    16、BOD进行计算即可【详解】解:连接CE,如图,ACBC,ACB90,ACOE,COEEOB90,OC1,CE2,OE,cosOCE,OCE60,S阴影部分S扇形BCESOCES扇形BOD,故答案为【考点】本题考查了扇形面积的计算:求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积5、32【解析】【分析】如图,作CHAB于H交O于E、F,求出A、B的坐标,根据勾股定理求出AB,再由SABCABCHOBAC求出点C到AB的距离CH,即可求出圆C上点到AB的最大距离,根据面积公式求出即可【详解】如图,作CHAB于H交O于E、F,直线yx+6与x轴、y轴分别交于A、B两点,当y=0时,可得0=

    17、x+6,解得:x=8,A(8,0),当x=0时,得y=6,B(0,6),OA8,OB6,10,C(1,0),AC=8+1=9,SABCABCHOBAC,CH=5.4,FHCH+CF=5.4+16.4,即C上到AB的最大距离为6.4,PAB面积的最大值106.432,故答案为32【考点】本题考查了三角形的面积,勾股定理、三角形等面积法求高、求圆心到直线的距离等知识,解此题的关键是求出圆上的点到直线AB的最大距离三、解答题1、2.28【解析】【分析】由图形可知阴影面积=半圆面积-两个小三角形面积和,根据公式计算即可【详解】r22-2222=3.14222-4=2.28【考点】本题考查了圆的面积公式

    18、,解题的关键是熟练掌握间接法求阴影部分图形的面积2、 (1)4;(2)命题正确,证明见解析【解析】【分析】(1)根据平行四边形中AD=BC计算即可;根据距离公式证明AD=AB即可说明四边形是菱形;(2)由BC=AD求出B的横坐标,再在解析式中求出B坐标,即可求出AB的解析式,同时根据顶点坐标特征求出的解析式,再利用反证法证明即可(1)平行四边形A,D的坐标分别是,其中,平行四边形四边形是菱形(2)命题正确,理由如下:抛物线的对称轴为顶点坐标为顶点在定直线上移动即的解析式为,抛物线经过点B,C且对称轴为,B点横坐标为B点坐标为:设直线AB的解析式为则假设对所有的a,b,当时,存在的情形,对所有的

    19、a,b,当时,去分母整理得:,此时互相矛盾,假设不成立对所有的a,b,当时,一定不存在的情形【考点】本题考查平行四边形的性质、菱形的判定、反证法、二次函数的性质解题的关键是利用平行四边形对边相等找关系,最后一问计算量比较大,需要特别注意3、(1)见解析;(2)O的半径是4.5【解析】【分析】(1)如图1,连接OC,先根据四边形ABCD内接于O,得,再根据等量代换和直角三角形的性质可得,由切线的判定可得结论;(2)如图2,过点O作于G,连接OC,OD,则,先根据三个角是直角的四边形是矩形得四边形OGEC是矩形,设O的半径为x,根据勾股定理列方程可得结论【详解】(1)证明:如图1,连接OC,四边形

    20、ABCD内接于O,又,OC是O的半径,CE为O的切线;(2)解:如图2,过点O作于G,连接OC,OD,则,四边形OGEC是矩形,设O的半径为x,RtCDE中,由勾股定理得,解得:,O的半径是4.5【考点】本题考查的是圆的综合,涉及到圆的切线的证明、勾股定理以及矩形的性质,熟练掌握相关性质是解决问题的关键4、(1)当时,四边形PQCD为平行四边形;(2)当t=2秒时,PQ与O相切【解析】【分析】(1)由题意得:,则,再由四边形PQCD是平行四边形,得到DP=CQ,由此建立方程求解即可;(2)设PQ与O相切于点H过点P作PEBC,垂足为E先证明四边形ABEP是矩形,得到PE=AB=12cm由AP=

    21、BE=tcm,CQ=2tcm,得到BQ =(222t)cm,EQ=223t)cm;再由切线长定理得到AP=PH,HQ=BQ,则PQ=PH+HQ=AP+BQ=t+222t=(22t)cm;在RtPEQ中,PE2+EQ2=PQ2,则122+(223t)2=(22t)2,即:8t288t+144=0,由此求解即可【详解】解:(1)由题意得:,四边形PQCD是平行四边形,DP=CQ,解得,当时,四边形PQCD为平行四边形;(2)设PQ与O相切于点H过点P作PEBC,垂足为EPEB=90在直角梯形ABCD,ADBC,ABC=90,BAD=90,四边形ABEP是矩形,PE=AB=12cmAP=BE=tcm

    22、,CQ=2tcm,BQ=BCCQ=(222t)cm,EQ=BQBE=222tt=(223t)cm;AB为O的直径,ABC=DAB=90,AD、BC为O的切线,AP=PH,HQ=BQ,PQ=PH+HQ=AP+BQ=t+222t=(22t)cm;在RtPEQ中,PE2+EQ2=PQ2,122+(223t)2=(22t)2,即:8t288t+144=0,t211t+18=0,(t2)(t9)=0,t1=2,t2=9;P在AD边运动的时间为秒t=98,t=9(舍去),当t=2秒时,PQ与O相切【考点】本题主要考查了切线长定理,矩形的性质与判定,勾股定理,平行四边形的性质等等,解题的关键在于能够熟练掌握切线长定理5、【解析】【分析】根据弧长的计算公式计算即可【详解】解:圆心角的度数【考点】本题考查弧长的计算,掌握弧长公式是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度人教版九年级数学上册第二十四章圆专题训练试卷(含答案详解).docx
    链接地址:https://www.ketangku.com/wenku/file-641513.html
    相关资源 更多
  • 人教版二年级下册数学 期中测试卷含答案【新】.docx人教版二年级下册数学 期中测试卷含答案【新】.docx
  • 人教版二年级下册数学 期中测试卷含答案【巩固】.docx人教版二年级下册数学 期中测试卷含答案【巩固】.docx
  • 人教版二年级下册数学 期中测试卷含答案【实用】.docx人教版二年级下册数学 期中测试卷含答案【实用】.docx
  • 人教版二年级下册数学 期中测试卷含答案【完整版】.docx人教版二年级下册数学 期中测试卷含答案【完整版】.docx
  • 人教版二年级下册数学 期中测试卷含答案【夺分金卷】.docx人教版二年级下册数学 期中测试卷含答案【夺分金卷】.docx
  • 人教版二年级下册数学 期中测试卷含答案【基础题】.docx人教版二年级下册数学 期中测试卷含答案【基础题】.docx
  • 人教版二年级下册数学 期中测试卷含答案【培优】.docx人教版二年级下册数学 期中测试卷含答案【培优】.docx
  • 人教版二年级下册数学 期中测试卷含答案【培优b卷】.docx人教版二年级下册数学 期中测试卷含答案【培优b卷】.docx
  • 人教版二年级下册数学 期中测试卷含答案【培优a卷】.docx人教版二年级下册数学 期中测试卷含答案【培优a卷】.docx
  • 人教版二年级下册数学 期中测试卷含答案【名师推荐】.docx人教版二年级下册数学 期中测试卷含答案【名师推荐】.docx
  • 人教版二年级下册数学 期中测试卷含答案【典型题】.docx人教版二年级下册数学 期中测试卷含答案【典型题】.docx
  • 人教版二年级下册数学 期中测试卷含答案【a卷】.docx人教版二年级下册数学 期中测试卷含答案【a卷】.docx
  • 人教版二年级下册数学 期中测试卷含答案ab卷.docx人教版二年级下册数学 期中测试卷含答案ab卷.docx
  • 人教版二年级下册数学 期中测试卷含完整答案(考点梳理).docx人教版二年级下册数学 期中测试卷含完整答案(考点梳理).docx
  • 人教版二年级下册数学 期中测试卷含完整答案(网校专用).docx人教版二年级下册数学 期中测试卷含完整答案(网校专用).docx
  • 人教版二年级下册数学 期中测试卷含完整答案(精品).docx人教版二年级下册数学 期中测试卷含完整答案(精品).docx
  • 人教版二年级下册数学 期中测试卷含完整答案(有一套).docx人教版二年级下册数学 期中测试卷含完整答案(有一套).docx
  • 人教版二年级下册数学 期中测试卷含完整答案(易错题).docx人教版二年级下册数学 期中测试卷含完整答案(易错题).docx
  • 人教版二年级下册数学 期中测试卷含完整答案(夺冠).docx人教版二年级下册数学 期中测试卷含完整答案(夺冠).docx
  • 人教版二年级下册数学 期中测试卷含完整答案(夺冠系列).docx人教版二年级下册数学 期中测试卷含完整答案(夺冠系列).docx
  • 人教版二年级下册数学 期中测试卷含完整答案(名校卷).docx人教版二年级下册数学 期中测试卷含完整答案(名校卷).docx
  • 人教版二年级下册数学 期中测试卷含完整答案(名师系列).docx人教版二年级下册数学 期中测试卷含完整答案(名师系列).docx
  • 人教版二年级下册数学 期中测试卷含完整答案(各地真题).docx人教版二年级下册数学 期中测试卷含完整答案(各地真题).docx
  • 人教版二年级下册数学 期中测试卷含完整答案(历年真题).docx人教版二年级下册数学 期中测试卷含完整答案(历年真题).docx
  • 人教版二年级下册数学 期中测试卷含完整答案(全国通用).docx人教版二年级下册数学 期中测试卷含完整答案(全国通用).docx
  • 人教版二年级下册数学 期中测试卷含完整答案(全优).docx人教版二年级下册数学 期中测试卷含完整答案(全优).docx
  • 人教版二年级下册数学 期中测试卷含完整答案【考点梳理】.docx人教版二年级下册数学 期中测试卷含完整答案【考点梳理】.docx
  • 人教版二年级下册数学 期中测试卷含完整答案【网校专用】.docx人教版二年级下册数学 期中测试卷含完整答案【网校专用】.docx
  • 人教版二年级下册数学 期中测试卷含完整答案【精选题】.docx人教版二年级下册数学 期中测试卷含完整答案【精选题】.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1