分享
分享赚钱 收藏 举报 版权申诉 / 30

类型2022-2023学年度人教版九年级数学上册第二十四章圆达标测试试卷(含答案详解版).docx

  • 上传人:a****
  • 文档编号:641578
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:30
  • 大小:660.42KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 度人 九年级 数学 上册 第二 十四 达标 测试 试卷 答案 详解
    资源描述:

    1、人教版九年级数学上册第二十四章圆达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,O的半径为5,弦AB=8,P是弦AB上的一个动点(不与A,B重合),下列符合条件的OP的值是()A6.5B5.

    2、5C3.5D2.52、已知O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A30B60C30或150D60或1203、如图所示,矩形纸片中,把它分割成正方形纸片和矩形纸片后,分别裁出扇形和半径最大的圆,恰好能作为一个圆锥的底面和侧面,则圆锥的表面积为()ABCD4、如图,在ABC中,cosB,sinC,AC5,则ABC的面积是( )A B12C14D215、如图,AC是O的直径,弦AB/CD,若BAC=32,则AOD等于()A64B48C32D766、下列4个说法中:直径是弦;弦是直径;任何一条直径所在的直线都是圆的对称轴;弧是半圆; 正确的有()A1个B2个C3个D

    3、4个7、如图所示,矩形纸片中,把它分割成正方形纸片和矩形纸片后,分别裁出扇形和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则的长为()ABCD8、已知点在半径为8的外,则()ABCD9、如图,在中,AB=AC=5,点在上,且,点E是AB上的动点,连结,点,G分别是BC,DE的中点,连接,当AG=FG时,线段长为()ABCD410、如图,是的直径,弦于点,则的长为()A4B5C8D16第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,将绕顺时针旋转后得,将线段绕点逆时针旋转后得线段,分别以,为圆心,、长为半径画弧和弧,连接,则图中阴影部分面积是_2、用反证法证

    4、明:“如果两条直线都和第三条直线平行,那么这两条直线也互相平行”.第一步应假设:_3、如图,圆锥的母线长OA=6,底面圆的半径为,一只小虫在圆线底面的点A处绕圆锥侧面一周又回到点A处,则小虫所走的最短路程为_(结果保留根号)4、若一个扇形的弧长是,面积是,则扇形的圆心角是_度5、如图,在一边长为的正六边形中,分别以点A,D为圆心,长为半径,作扇形,扇形,则图中阴影部分的面积为_(结果保留)三、解答题(5小题,每小题10分,共计50分)1、如图,已知点在上,点在外,求作一个圆,使它经过点,并且与相切于点(要求写出作法,不要求证明)2、在平面直角坐标系中,对于点,给出如下定义:当点满足时,称点Q是

    5、点P的等和点已知点(1)在,中,点P的等和点有_;(2)点A在直线上,若点P的等和点也是点A的等和点,求点A的坐标;(3)已知点和线段MN,对于所有满足的点C,线段MN上总存在线段PC上每个点的等和点若MN的最小值为5,直接写出b的取值范围3、如图,已知直线交于A、B两点,是的直径,点C为上一点,且平分,过C作,垂足为D(1)求证:是的切线;(2)若,的直径为20,求的长度4、在平面直角坐标系中,平行四边形的顶点A,D的坐标分别是,其中(1)若点B在x轴的上方,求的长;,且证明:四边形是菱形;(2)抛物线经过点B,C对于任意的,当a,m的值变化时,抛物线会不同,记其中任意两条抛物线的顶点为(与

    6、不重合),则命题“对所有的a,b,当时,一定不存在的情形”是否正确?请说明理由5、正方形ABCD的四个顶点都在O上,E是O上的一点(1)如图,若点E在上,F是DE上的一点,DF=BE求证:ADFABE;(2)在(1)的条件下,小明还发现线段DE、BE、AE之间满足等量关系:DE-BE=AE请说明理由;(3)如图,若点E在上连接DE,CE,已知BC=5,BE=1,求DE及CE的长-参考答案-一、单选题1、C【解析】【分析】连接OB,作OMAB与M根据垂径定理和勾股定理,求出OP的取值范围即可判断【详解】解:连接OB,作OMAB与MOMAB,AM=BM=AB=4,在直角OBM中,OB=5,BM=4

    7、,故选:C【考点】本题考查了垂径定理、勾股定理,常把半弦长,半圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解2、D【解析】【分析】由图可知,OA=10,OD=5根据特殊角的三角函数值求出AOB的度数,再根据圆周定理求出C的度数,再根据圆内接四边形的性质求出E的度数即可【详解】解:由图可知,OA=10,OD=5,在RtOAD中,OA=10,OD=5,AD=,tan1=,1=60,同理可得2=60,AOB=1+2=60+60=120,C=60,E=180-60=120即弦AB所对的圆周角的度数是60或120,故选D【考点】本题考查了圆周角定理、圆内接四边形的对角互补、解直角

    8、三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键3、B【解析】【分析】设圆锥的底面的半径为rcm,则DE2rcm,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2r,解方程求出r,然后求得直径即可【详解】解:设圆锥的底面的半径为rcm,则AE=BF=6-2r根据题意得2 r,解得r1,侧面积= ,底面积=所以圆锥的表面积=,故选:B【考点】本题综合考查有关扇形和圆锥的相关计算解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长正确对这两个关系的记忆是解题的关键4、A【解析

    9、】【分析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积【详解】解:过点A作ADBC,ABC中,cosB=,sinC=,AC=5,cosB=,B=45,sinC=,AD=3,CD=4,BD=3,则ABC的面积是:ADBC=3(3+4)=故选A【考点】此题主要考查了解直角三角形的知识,作出ADBC,进而得出相关线段的长度是解决问题的关键5、A【解析】【分析】由AB/CD,BAC32,根据平行线的性质,即可求得ACD的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得AOD的度数【详解】解:弦AB/CD,BAC=32,ACDB

    10、AD32, AOD=2ACD23264.故选:A【考点】此题考查了圆周角定理与平行线的性质解题的关键是注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半6、B【解析】【分析】根据弧的分类、圆的性质逐一判断即可【详解】解:直径是最长的弦,故正确;最长的弦才是直径,故错误;过圆心的任一直线都是圆的对称轴,故正确;半圆是弧,但弧不一定是半圆,故错误,正确的有两个,故选B【考点】本题考查了对圆的认识,熟知弦的定义、弧的分类是本题的关键7、B【解析】【分析】设AB=xcm,则DE=(6-x)cm,根据扇形的弧长等于圆锥底面圆的周长列出方程,求解即可【详解】设,则DE=(6-x)c

    11、m,由题意,得,解得. 故选B【考点】本题考查了圆锥的计算,矩形的性质,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长8、A【解析】【分析】根据点P与O的位置关系即可确定OP的范围【详解】解:点P在圆O的外部,点P到圆心O的距离大于8,故选:A【考点】本题主要考查点与圆的位置关系,关键是要牢记判断点与圆的位置关系的方法9、A【解析】【分析】连接DF,EF,过点F作FNAC,FMAB,结合直角三角形斜边中线等于斜边的一半求得点A,D,F,E四点共圆,DFE=90,然后根据勾股定理及正方形的判定和性质求得AE的长度,从而求

    12、解【详解】解:连接DF,EF,过点F作FNAC,FMAB在中,点G是DE的中点,AG=DG=EG又AG=FG点A,D,F,E四点共圆,且DE是圆的直径DFE=90在RtABC中,AB=AC=5,点是BC的中点,CF=BF=,FN=FM=又FNAC,FMAB,四边形NAMF是正方形AN=AM=FN=又,NFDMFEME=DN=AN-AD=AE=AM+ME=3在RtDAE中,DE=故选:A【考点】本题考查直径所对的圆周角是90,四点共圆及正方形的判定和性质和用勾股定理解直角三角形,掌握相关性质定理正确推理计算是解题关键10、C【解析】【分析】根据垂径定理得出CM=DM,再由已知条件得出圆的半径为5

    13、,在RtOCM中,由勾股定理得出CM即可,从而得出CD【详解】解:AB是O的直径,弦CDAB,CM=DM,AM=2,BM=8,AB=10,OA=OC=5,在RtOCM中,OM2+CM2=OC2,CM=4,CD=8故选:C【考点】本题考查了垂径定理,圆周角定理以及勾股定理,掌握定理的内容并熟练地运用是解题的关键二、填空题1、【解析】【分析】作DHAE于H,根据勾股定理求出AB,根据阴影部分面积=ADE的面积+EOF的面积+扇形AOF的面积扇形DEF的面积计算即可得到答案【详解】解:作DHAE于H,AOB=90,OA=3,OB=2, , 由旋转得EOFBOA, OAB=EFO, FEO+EFO=F

    14、EO+HED=90, EFO=HED,HED=OAB, DHE=AOB=90, DHEBOA(AAS), DH=OB=1,阴影部分面积=ADE的面积+EOF的面积+扇形AOF的面积扇形DEF的面积, 故答案为:【考点】本题考查的是扇形面积的计算、旋转的性质、全等三角形的判定和性质,掌握扇形的面积公式和旋转的性质是解题的关键2、这两条直线不平行【解析】【分析】本题需先根据已知条件和反证法的特点进行证明,即可求出答案【详解】证明:已知两条直线都和第三条直线平行;假设这两条直线不平行,则两条直线有交点,因为过直线外一点有且只有一条直线与已知直线平行因此,两条直线有交点时,它们不可能同时与第三条直线平

    15、行因此假设与结论矛盾故假设不成立,即如果两条直线都和第三条直线平行,那么这两条直线也互相平行故答案为:这两条直线不平行【考点】本题主要考查了反证法,在解题时要根据反证法的特点进行证明是本题的关键3、6【解析】【分析】利用圆锥的底面周长等于侧面展开图的弧长可得圆锥侧面展开图的圆心角,求出侧面展开图中两点间的距离即为最短距离【详解】底面圆的半径为,圆锥的底面周长为23,设圆锥的侧面展开图的圆心角为n,解得n90,如图,AA的长就是小虫所走的最短路程,O=90,OA=OA=6,AA故答案为:6【考点】本题考查了圆锥的计算,考查圆锥侧面展开图中两点间距离的求法;把立体几何转化为平面几何来求是解决本题的

    16、突破点4、60【解析】【分析】根据扇形的面积公式求出半径,然后根据弧长公式求出圆心角即可【详解】解:扇形的面积=6,解得:r=6,又=2,n=60故答案为:60【考点】此题考查了扇形的面积和弧长公式,解题的关键是掌握运算方法5、【解析】【分析】先利用正多边形内角和公式求得每个内角,再利用扇形面积公式求出扇形ABF、扇形DCE的面积,即可得出结果【详解】由正多边形每个内角公式可得该正六边形的每一个内角;,;则阴影部分面积为:【考点】本题考查了正多边形和圆、扇形面积计算等知识;掌握正多边形内角的计算公式和扇形面积公式是解题的关键三、解答题1、见解析【解析】【分析】先确定圆心,再确定圆的半径,画圆即

    17、可【详解】解:如图,连接、,作线段的垂直平分线交的延长线于一点,交点即为,以为圆心,或的长度为半径作圆,即为所求【考点】本题考查了确定圆的条件和相切两圆的性质,作图是难点,注:确定圆,即确定圆心和半径2、 (1),;(2);(3)【解析】【分析】(1)根据新定义计算即可;(2)由(1)可知,P的等和点纵坐标比横坐标大2,根据等和点的定义,A的横坐标比纵坐标大2,由此可得方程,求解即可;(3)因为线段MN上总存在线段PC上每个点的等和点且MN的最小值为5,所以PC的最大距离不能超过5,分别找到点P和点C的等和点所在的区域或直线,然后得到MN取得最大值时,b的边界即可(1)解:由题意可知:,点Q1

    18、是点P的等和点;,点Q2不是点P的等和点;,点Q3是点P的等和点;点P的等和点有,(2)解:设,由(1)可知,P的等和点纵坐标比横坐标大2,点P的等和点也是点A的等和点,A的横坐标比纵坐标大2,则,解之得:,故,(3)解:P(2,0),P点的等和点在直线y=x+2上,B(b,0),B点的等和点在直线y=x+b上,设直线y=x+b与y轴的交点为B(0,b),BC=1,C点在以B为圆心,半径为1的圆上,点C的等和点是两条直线及其之间与其平行的所有平行线上,以B为圆心,1为半径作圆,过点B作y=x+2的垂线交圆与N点,交直线于M点,MN的最小值为5,BM最小值为4,在RtBMP中,BP=,PB=,O

    19、B=,同理当B点在y轴左侧时OB=,b【考点】本题考查新定义,涉及到平面直角坐标系,坐标轴上两点之间的距离,一次函数,解题的关键是理解题意,根据题意进行求解,(3)较难,需理解题意将其转化为求PC最大值问题3、 (1)证明见解析(2)【解析】【分析】(1)连接OC,根据题意可证得CAD+DCA=90,再根据角平分线的性质,得DCO=90,则CD为 O的切线;(2)过O作OFAB,则OCD=CDA=OFD=90,得四边形DCOF为矩形,设AD=x,在RtAOF中,由勾股定理得,从而求得x的值,由勾股定理求出AF的长,再求AB的长(1)证明:连接,平分,又为半径是的切线(2)解:过O作,垂足为F,

    20、四边形为矩形,设,则,的直径为20,在中,由勾股定理得,即,解得:(不合题意,舍去),由垂径定理知,F为的中点,【考点】本题考查了切线的证明,矩形的判定和性质以及勾股定理,掌握切线的定义和证明方法是解题的关键4、 (1)4;(2)命题正确,证明见解析【解析】【分析】(1)根据平行四边形中AD=BC计算即可;根据距离公式证明AD=AB即可说明四边形是菱形;(2)由BC=AD求出B的横坐标,再在解析式中求出B坐标,即可求出AB的解析式,同时根据顶点坐标特征求出的解析式,再利用反证法证明即可(1)平行四边形A,D的坐标分别是,其中,平行四边形四边形是菱形(2)命题正确,理由如下:抛物线的对称轴为顶点

    21、坐标为顶点在定直线上移动即的解析式为,抛物线经过点B,C且对称轴为,B点横坐标为B点坐标为:设直线AB的解析式为则假设对所有的a,b,当时,存在的情形,对所有的a,b,当时,去分母整理得:,此时互相矛盾,假设不成立对所有的a,b,当时,一定不存在的情形【考点】本题考查平行四边形的性质、菱形的判定、反证法、二次函数的性质解题的关键是利用平行四边形对边相等找关系,最后一问计算量比较大,需要特别注意5、(1)证明见解析;(2)理由见解析;(3)DE=7,CE=【解析】【分析】(1)根据正方形的性质,得AB=AD;根据圆周角的性质,得,结合DF=BE,即可完成证明;(2)由(1)结论得AF=AE,;结

    22、合BAD=90,得EAF=90,从而得到EAF是等腰直角三角形,即EF=AE;最后结合DE-DF=EF,从而得到答案;(3)连接BD,将CBE绕点C顺时针旋转90至CDH;结合题意,得CBE+CDE=180,从而得到E,D,H三点共线;根据BC=CD,得,从而推导得BEC=DEC=45,即CEH是等腰直角三角形;再根据勾股定理的性质计算,即可得到答案【详解】(1)如图,在正方形ABCD中,AB=AD在ADF和ABE中ADFABE(SAS);(2)由(1)结论得:ADFABEAF=AE,3=4正方形ABCD中,BAD=90BAF+3=90BAF+4=90EAF=90EAF是等腰直角三角形EF2=

    23、AE2+AF2EF2=2AE2EF=AE即DE-DF=AEDE-BE=AE;(3)连接BD,将CBE绕点C顺时针旋转90至CDH四边形BCDE内接于圆CBE+CDE=180E,D,H三点共线在正方形ABCD中,BAD=90BED=BAD=90BC=CDBEC=DEC=45CEH是等腰直角三角形在RtBCD中,由勾股定理得BD=BC=5在RtBDE中,由勾股定理得:DE=在RtCEH中,由勾股定理得:EH2=CE2+CH2(ED+DH)2=2CE2,即(ED+BE)2=2CE264=2CE2CE=4【考点】本题考查了正方形、圆、等腰三角形、勾股定理、全等三角形、旋转的知识;解题的关键是熟练掌握正方形、圆周角、正多边形与圆、等腰三角形、勾股定理、全等三角形、旋转的性质,从而完成求解

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度人教版九年级数学上册第二十四章圆达标测试试卷(含答案详解版).docx
    链接地址:https://www.ketangku.com/wenku/file-641578.html
    关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1