分享
分享赚钱 收藏 举报 版权申诉 / 24

类型2022-2023学年度北师大版八年级数学上册第一章勾股定理专项练习试题(含答案解析版).docx

  • 上传人:a****
  • 文档编号:643332
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:24
  • 大小:1.29MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年度 北师大 八年 级数 上册 第一章 勾股定理 专项 练习 试题 答案 解析
    资源描述:

    1、北师大版八年级数学上册第一章勾股定理专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,把长方形纸条ABCD沿EF,GH同时折叠,B,C两点恰好落在AD边的P点处,若FPH90,PF8,PH6,

    2、则长方形ABCD的边BC的长为( ) A20B22C24D302、如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底墙到左墙角的距离为1.5m,顶端距离地面2m,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面0.7m,那么小巷的宽度为()A3.2mB3.5mC3.9mD4m3、如图所示的网格是正方形网格,A,B,C,D是网格线交点,则与的大小关系为()ABCD无法确定4、如图,P是等边三角形内的一点,且,以为边在外作,连接,则以下结论中不正确的是()ABCD5、ABC的三边长a,b,c满足+(b12)2+|c13|0,则ABC的面积是()A65B60C30D266、如图,O

    3、AB的顶点O(0,0),顶点A,B分别在第一、四象限,且ABx轴,若AB=6,OA=OB=5,则点A的坐标是()ABCD7、如图,将ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么ABC中BC边上的高是()ABCD8、如图,在由边长为1的7个正六边形组成的网格中,点A,B在格点上若再选择一个格点C,使ABC是直角三角形,且每个直角三角形边长均大于1,则符合条件的格点C的个数是()A2B4C5D69、 “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形设

    4、直角三角形较长直角边长为a,较短直角边长为b若ab=8,大正方形的面积为25,则小正方形的边长为A9B6C4D310、如图,在RtACB和RtDCE中,ACBC2,CDCE,CBD15,连接AE,BD交于点F,则BF的长为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,圆柱形无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口1cm的F处有一苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路线的长度为_cm(容器壁厚度忽略不计)2、如图,一个高,底面周长的圆柱形水塔,现制造一个螺旋形登梯,为了

    5、减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少为_长3、在继承和发扬红色学校光荣传统,与时俱进,把育英学校建成一所文明的、受社会尊敬的学校升旗仪式上,如图所示,一根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离有5米则旗杆的高度_4、如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了_米5、如图,RtABC的两条直角边,分别以RtABC的三边为边作三个正方形若四个阴影部分面积分别为,则的值为_,的值为_三、解答题(5小题,每小题10分,共计50分)1、已知:整式A(

    6、n21)2+(2n)2,整式B0尝试化简整式A发现AB2求整式B联想:由上可知,B2(n21)2+(2n)2,当n1时,n21,2n,B为直角三角形的三边长,如图,填写下表中B的值;直角三角形三边n212nB勾股数组8勾股数组352、如图,已知等腰ABC的底边BC=10cm,D是腰AC上一点,且CD=6cm,BD=8cm(1)判断BCD的形状,并说明理由;(2)求ABC的周长3、阅读与思考:请阅读下列材料,并完成相应的任务若直角三角形的三边的长都是正整数,则三边的长为“勾股数”构造勾股数,就是要寻找3个正整数,使它们满足“其中两个数的平方和(或平方差)等于第三个数的平方”通过观察常见勾股数“3

    7、,4,5”;“5,12,13”;“7,24,25”猜想当一组勾股数中(),最小数为奇数时,另两个正整数和满足比且,解得,任务:(1)请证明猜想成立,即证明,构成勾股数(2)若一组勾股数中,最小数为9,则另两个数分别是_和_4、若的三边,满足条件,试判断的形状.5、湖的两岸有A,B两棵景观树,数学兴趣小组设计实验测量两棵景观树之间的距离,他们在与AB垂直的BC方向上取点C,测得米,米求:(1)两棵景观树之间的距离;(2)点B到直线AC的距离-参考答案-一、单选题1、C【解析】【详解】由折叠得: 在Rt 中,FPH90,PF8,PH6,则 故BC=BF+FH+HC=6+8+10=24.故选C.2、

    8、C【解析】【分析】如图,在RtACB中,先根据勾股定理求出AB,然后在RtABD中根据勾股定理求出BD,进而可得答案【详解】解:如图,在RtACB中,ACB90,BC1.5米,AC2米,AB21.52+226.25,AB=2.5米,在RtABD中,ADB90,AD0.7米,BD2+AD2AB2,BD2+0.726.25,BD25.76,BD0,BD2.4米,CDBC+BD1.5+2.43.9米故选:C【考点】本题考查了勾股定理的应用,正确理解题意、熟练掌握勾股定理是解题的关键3、C【解析】【分析】根据每个小网格都为正方形,设每个网格为1,由勾股定理可以求出AD、AC、 CD的长,再由勾股定理的

    9、逆定理得到ACD为等腰直角三角形,同理可得ABC为等腰直角三角形,即BAC= DAC【详解】解:如图,设正方形每个网格的边长都为1,连接CD、BC,则,为等腰直角三角形,同理:,为等腰直角三角形,故选:C【考点】本题考查勾股定理的性质、勾股定理的逆定理以及等腰直角三角形的判定,解本题的关键要掌握勾股定理及逆定理的基本知识4、C【解析】【分析】根据ABC是等边三角形,得出ABC=60,根据BQCBPA,得出CBQ=ABP,PB=QB=4,PA=QC=3,BPA=BQC,求出PBQ=60,即可判断A;根据勾股定理的逆定理即可判断B;根据BPQ是等边三角形,PCQ是直角三角形即可判断D;求出APC=

    10、150-QPC,和PC2QC,可得QPC30,即可判断C【详解】解:ABC是等边三角形,ABC=60,BQCBPA,CBQ=ABP,PB=QB=4,PA=QC=3,BPA=BQC,PBQ=PBC+CBQ=PBC+ABP=ABC=60,所以A正确,不符合题意;PQ=PB=4,PQ2+QC2=42+32=25,PC2=52=25,PQ2+QC2=PC2,PQC=90,所以B正确,不符合题意;PB=QB=4,PBQ=60,BPQ是等边三角形,BPQ=60,APB=BQC=BQP+PQC=60+90=150,所以D正确,不符合题意;APC=360-150-60-QPC=150-QPC,PC=5,QC=

    11、PA=3,PC2QC,PQC=90,QPC30,APC120所以C不正确,符合题意故选:C【考点】本题是三角形综合题,考查了全等三角形的性质、等边三角形的性质、勾股定理的逆定理,解决本题的关键是综合应用以上知识5、C【解析】【分析】首先根据非负数的性质可得a-5=0,b-12=0,c-13=0,进而可得a、b、c的值,再利用勾股定理逆定理证明ABC是直角三角形,最后由直角三角形面积公式求解即可【详解】解:+(b-12)2+|c-13|=0,a-5=0,b-12=0,c-13=0,a=5,b=12,c=13,52+122=132,ABC是直角三角形,SABC=30故选:C【考点】此题主要考查了非

    12、负数的性质,以及勾股定理逆定理,熟练掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形,利用非负数性质求出a、b、c的值是解题的关键6、D【解析】【分析】利用HL证明ACOBCO,利用勾股定理得到OC=4,即可求解【详解】解:ABx轴,ACO=BCO=90,OA=OB,OC=OC,ACOBCO(HL),AC=BC=AB=3,OA=5,OC=4,点A的坐标是(4,3),故选:D【考点】本题考查了坐标与图形,全等三角形的判定和性质,勾股定理,解题的关键是灵活运用所学知识解决问题7、A【解析】【详解】先用勾股定理耱出三角形的三边,再根据勾股定理的逆定理判断出ABC是直

    13、角三角形,最后设BC边上的高为h,利用三角形面积公式建立方程即可得出答案.解:由勾股定理得:, ,即ABC是直角三角形,设BC边上的高为h,则,.故选A.点睛:本题主要考查勾股理及其逆定理.借助网格利用勾股定理求边长,并用勾股定理的逆定理来判断三角形是否是直角三角形是解题的关键.8、D【解析】【分析】分三种情况讨论,当A=90,或B=90,或C=90时,分别画出符合条件的图形,即可解答【详解】解:分三种情况讨论,当A=90,或B=90,或C=90如图 符合条件的格点C的个数是6个故选:D【考点】本题考查正多边形和圆的性质、直角三角形的判定与性质、直径所对的圆周角是90等知识,是基础考点,掌握相

    14、关知识是解题关键9、D【解析】【分析】由题意可知:中间小正方形的边长为:,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长【详解】解:由题意可知:中间小正方形的边长为:,每一个直角三角形的面积为:,或(舍去),故选:D【考点】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型10、B【解析】【分析】由已知证得,进而确定三个内角的大小,求得,进而可得到答案【详解】解: 又 在等腰直角三角形中 故选:B【考点】本题考查全等三角形的判定和性质,勾股定理;熟练掌握相关知识是解题的关键二、填空题1、34【解析】【分析】首先展开圆柱的侧面,即是矩形,接下来根据两点之间

    15、线段最短,可知CF的长即为所求;然后结合已知条件求出DF与CD的长,再利用勾股定理进行计算即可.【详解】如图为圆柱形玻璃容器的侧面展开图,线段CF是蜘蛛由C到F的最短路程.根据题意,可知DF=18-1-1=16(cm),CD(cm),(cm),即蜘蛛所走的最短路线的长度是34cm.故答案为34.【考点】此题是有关最短路径的问题,关键在于把立体图形展开成平面图形,找出最短路径;2、20m【解析】【分析】试题分析:要求登梯的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理【详解】将圆柱表面按一周半开展开呈长方形,圆柱高16m,底面周长8m,设螺旋形登梯长为

    16、xm,x2=(18+4)2+162=400, 登梯至少=20m故答案为:20m【考点】本题考查圆柱形侧面展开图新问题,涉及勾股定理,掌握按要求将圆柱侧面展开图形的方法,会利用圆周,高与对角线组成直角三角形,用勾股定理解决问题是关键3、12米【解析】【分析】设旗杆的高度是x米,绳子长为(x+1)米,旗杆,拉直的绳子和BC构成直角三角形,根据勾股定理可求出x的值,从而求出旗杆的高度【详解】解:设旗杆的高度为米,根据题意可得:,解得:,答:旗杆的高度为12米故答案为:12米【考点】本题考查勾股定理的应用,关键看到旗杆,拉直的绳子和BC构成直角三角形,根据勾股定理可求解4、9【解析】【分析】在RtAB

    17、C中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB-AD可得BD长【详解】在RtABC中:CAB90,BC17米,AC8米,AB15(米),CD10(米),AD6(米),BDABAD1569(米),答:船向岸边移动了9米,故答案为:9【考点】本题考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图领会数形结合的思想的应用5、 24 0【解析】【分析】先证明从而可得 再利用图形的面积关系可得: 两式相减可得: 而证明 从而可得第二空的答案.【详解】解:如图,以RtABC的三边为边作三个正方形, 两式相减可得: 而

    18、 故答案为:24,0【考点】本题考查的是正方形的性质,全等三角形的判定与性质,图形面积之间的关系,证明是解本题的关键.三、解答题1、A(n2+1)2,Bn2+1,15,17;12,37【解析】【分析】先根据整式的混合运算法则求出A,进而求出B,再把n的值代入即可解答【详解】A(n21)2+(2n)2n42n2+1+4n2n4+2n2+1(n2+1)2,AB2,B0,Bn2+1,当2n8时,n4,n2142115,n2+142+117;当n2135时,n6(负值舍去),2n2612,n2+137直角三角形三边n212nB勾股数组15817勾股数组351237故答案为:15,17;12,37【考点

    19、】本题考查了勾股数的定义及勾股定理的逆定理:已知ABC的三边满足a2+b2=c2,则ABC是直角三角形2、 (1)BDC为直角三角形,理由见解析;(2)ABC的周长为=cm【解析】【分析】(1)由BC=10cm,CD=8cm,BD=6cm,知道BC2=BD2+CD2,所以BDC为直角三角形;(2)由此可求出AC的长,周长即可求出(1)解:BDC为直角三角形,理由如下,BC=10cm,CD=8cm,BD=6cm,而102=62+82,BC2=BD2+CD2BDC为直角三角形;(2)解:设AB=xcm,等腰ABC,AB=AC=x,则AD=x-6,AB2=AD2+BD2,即x2=(x-6)2+82,

    20、x=,ABC的周长=2AB+BC=(cm)【考点】本题考查了勾股定理的逆定理,关键是根据等腰三角形的性质、勾股定理以及逆定理的应用解答3、 (1)见解析(2)40;41【解析】【分析】(1)利用勾股定理的逆定理证明即可(2)利用勾股数的公式代入求值即可(1)证明:,构成勾股数.(2)根据最小数为奇数时,另两个正整数为,当a=9时,故答案为:40,41【考点】本题考查了勾股定理逆定理,勾股数的探索,代入求值,熟练掌握勾股数是解题的关键4、三角形为直角三角形,理由见解析【解析】【分析】这是一道有关勾股定理的逆定理、完全平方公式的解答题把已知条件写成三个完全平方式的和的形式,再由非负数的性质求得三边

    21、,根据勾股定理的逆定理即可判断ABC的形状.【详解】,即,该三角形为直角三角形【考点】此题主要考查了勾股定理的逆定理、完全平方公式.此题的关键就是灵活掌握完全平方公式的特点,用配方法进行恒等变形,在恒等变形的过程中不要改变式子的值.5、(1)A,B两点间的 距离是40米;(2)点B到直线AC的距离是24米【解析】【分析】(1)根据勾股定理解答即可;(2)根据三角形面积公式解答即可【详解】(1)因为是直角三角形,所以由勾股定理,得因为米,所以因为,所以米即A,B两点间的 距离是40米(2)过点B作于点D因为,所以所以(米),即点B到直线AC的距离是24米【考点】本题考查了勾股定理的应用,属于基础题,关键是掌握勾股定理在直角三角形中的表达式

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度北师大版八年级数学上册第一章勾股定理专项练习试题(含答案解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-643332.html
    相关资源 更多
  • 一年级上册道德与法治第一单元我是小学生啦测试卷附答案(完整版).docx一年级上册道德与法治第一单元我是小学生啦测试卷附答案(完整版).docx
  • 一年级上册道德与法治第一单元我是小学生啦测试卷附答案(夺分金卷).docx一年级上册道德与法治第一单元我是小学生啦测试卷附答案(夺分金卷).docx
  • 一年级上册道德与法治第一单元我是小学生啦测试卷附答案(基础题).docx一年级上册道德与法治第一单元我是小学生啦测试卷附答案(基础题).docx
  • 一年级上册道德与法治第一单元我是小学生啦测试卷附答案(培优).docx一年级上册道德与法治第一单元我是小学生啦测试卷附答案(培优).docx
  • 一年级上册道德与法治第一单元我是小学生啦测试卷附答案(培优a卷).docx一年级上册道德与法治第一单元我是小学生啦测试卷附答案(培优a卷).docx
  • 一年级上册道德与法治第一单元我是小学生啦测试卷附答案(典型题).docx一年级上册道德与法治第一单元我是小学生啦测试卷附答案(典型题).docx
  • 一年级上册道德与法治第一单元我是小学生啦测试卷附答案解析.docx一年级上册道德与法治第一单元我是小学生啦测试卷附答案解析.docx
  • 一年级上册道德与法治第一单元我是小学生啦测试卷附答案【预热题】.docx一年级上册道德与法治第一单元我是小学生啦测试卷附答案【预热题】.docx
  • 一年级上册道德与法治第一单元我是小学生啦测试卷附答案【达标题】.docx一年级上册道德与法治第一单元我是小学生啦测试卷附答案【达标题】.docx
  • 一年级上册道德与法治第一单元我是小学生啦测试卷附答案【考试直接用】.docx一年级上册道德与法治第一单元我是小学生啦测试卷附答案【考试直接用】.docx
  • 一年级上册道德与法治第一单元我是小学生啦测试卷附答案【综合题】.docx一年级上册道德与法治第一单元我是小学生啦测试卷附答案【综合题】.docx
  • 一年级上册道德与法治第一单元我是小学生啦测试卷附答案【综合卷】.docx一年级上册道德与法治第一单元我是小学生啦测试卷附答案【综合卷】.docx
  • 一年级上册道德与法治第一单元我是小学生啦测试卷附答案【精练】.docx一年级上册道德与法治第一单元我是小学生啦测试卷附答案【精练】.docx
  • 一年级上册道德与法治第一单元我是小学生啦测试卷附答案【满分必刷】.docx一年级上册道德与法治第一单元我是小学生啦测试卷附答案【满分必刷】.docx
  • 一年级上册道德与法治第一单元我是小学生啦测试卷附答案【模拟题】.docx一年级上册道德与法治第一单元我是小学生啦测试卷附答案【模拟题】.docx
  • 一年级上册道德与法治第一单元我是小学生啦测试卷附答案【实用】.docx一年级上册道德与法治第一单元我是小学生啦测试卷附答案【实用】.docx
  • 一年级上册道德与法治第一单元我是小学生啦测试卷附答案【夺分金卷】.docx一年级上册道德与法治第一单元我是小学生啦测试卷附答案【夺分金卷】.docx
  • 一年级上册道德与法治第一单元我是小学生啦测试卷附答案【基础题】.docx一年级上册道德与法治第一单元我是小学生啦测试卷附答案【基础题】.docx
  • 一年级上册道德与法治第一单元我是小学生啦测试卷附答案【培优】.docx一年级上册道德与法治第一单元我是小学生啦测试卷附答案【培优】.docx
  • 一年级上册道德与法治第一单元我是小学生啦测试卷附答案【培优b卷】.docx一年级上册道德与法治第一单元我是小学生啦测试卷附答案【培优b卷】.docx
  • 一年级上册道德与法治第一单元我是小学生啦测试卷附答案【培优a卷】.docx一年级上册道德与法治第一单元我是小学生啦测试卷附答案【培优a卷】.docx
  • 一年级上册道德与法治第一单元我是小学生啦测试卷附答案【名师推荐】.docx一年级上册道德与法治第一单元我是小学生啦测试卷附答案【名师推荐】.docx
  • 一年级上册道德与法治第一单元我是小学生啦测试卷附答案【典型题】.docx一年级上册道德与法治第一单元我是小学生啦测试卷附答案【典型题】.docx
  • 一年级上册道德与法治第一单元我是小学生啦测试卷附答案【a卷】.docx一年级上册道德与法治第一单元我是小学生啦测试卷附答案【a卷】.docx
  • 一年级上册道德与法治第一单元我是小学生啦测试卷附答案ab卷.docx一年级上册道德与法治第一单元我是小学生啦测试卷附答案ab卷.docx
  • 一年级上册道德与法治第一单元我是小学生啦测试卷附答案.docx一年级上册道德与法治第一单元我是小学生啦测试卷附答案.docx
  • 一年级上册道德与法治第一单元我是小学生啦测试卷附完整答案(考点梳理).docx一年级上册道德与法治第一单元我是小学生啦测试卷附完整答案(考点梳理).docx
  • 一年级上册道德与法治第一单元我是小学生啦测试卷附完整答案(网校专用).docx一年级上册道德与法治第一单元我是小学生啦测试卷附完整答案(网校专用).docx
  • 一年级上册道德与法治第一单元我是小学生啦测试卷附完整答案(精选题).docx一年级上册道德与法治第一单元我是小学生啦测试卷附完整答案(精选题).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1