2022-2023学年期末强化人教版九年级数学上册期中模拟考试题 卷(Ⅱ)(含详解).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022-2023学年期末强化人教版九年级数学上册期中模拟考试题 卷含详解 2022 2023 学年 期末 强化 人教版 九年级 数学 上册 期中 模拟 考试题 详解
- 资源描述:
-
1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中模拟考试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、关于二次函数的最大值或最小值,下列说法正确的是()A有最大值4B有最
2、小值4C有最大值6D有最小值62、下列图形中,既是轴对称图形,又是中心对称图形的是()ABCD3、下列各式中表示二次函数的是()Ayx2+By2x2CyDy(x1)2x24、二次函数y=x2+px+q,当0x1时,此函数最大值与最小值的差()A与p、q的值都有关B与p无关,但与q有关C与p、q的值都无关D与p有关,但与q无关5、记某商品销售单价为x元,商家销售此种商品每月获得的销售利润为y元,且y是关于x的二次函数已知当商家将此种商品销售单价分别定为55元或75元时,他每月均可获得销售利润1800元;当商家将此种商品销售单价定为80元时,他每月可获得销售利润1550元,则y与x的函数关系式是(
3、)Ay(x60)2+1825By2(x60)2+1850Cy(x65)2+1900Dy2(x65)2+2000二、多选题(5小题,每小题4分,共计20分)1、如图,已知顶点为(3,6)的抛物线经过点(1,4),则下列结论中正确的是()ABC关于x的一元二次方程的两根分别为和D若点(2,m),(5,n)在抛物线上,则2、下面一元二次方程的解法中,不正确的是()A(x-3)(x-5)=102,x-3=10,x-5=2,x1=13,x2=7B(2-5x)+(5x-2)2=0,(5x-2)(5x-3)=0,x1=,x2=C(x+2)2+4x=0,x1=2,x2=-2Dx2=x两边同除以x,得x=13、
4、二次函数y=ax2+bx+c(a0)的大致图象如图所示(1x=h2,0xA1)下列结论中正确的 线 封 密 内 号学级年名姓 线 封 密 外 是()A2a+b0Babc0C若OC=2OA,则2bac=4D3ac04、如图所示,抛物线y=ax2+bx+c的顶点为(1,3),以下结论中不正确的是( )Ab24ac0B4a2b+c0C2cb=3Da+3=c5、已知抛物线上部分点的横坐标x与纵坐标y的对应值如表所示,对于下列结论:x-10123y30-1m3抛物线开口向下;抛物线的对称轴为直线;方程的两根为0和2;当时,x的取值范围是或正确的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每
5、小题5分,共计25分)1、已知二次函数yx2bxc的顶点在x轴上,点A(m1,n)和点B(m3,n)均在二次函数图象上,求n的值为_2、在平面直角坐标系中,已知抛物线ymx22mxm2(m0)(1)抛物线的顶点坐标为_;(2)点M(x1,y1)、N(x2,y2)(x1x23)是拋物线上的两点,若y1y2,x2x12,则y2的取值范围为_(用含 m的式子表示)3、已知(m1)3x50是一元二次方程,则m_4、若某二次函数图象的形状与抛物线y3x2相同,且顶点坐标为(0,2),则它的表达式为_5、已知函数y的图象如图所示,若直线ykx3与该图象有公共点,则k的最大值与最小值的和为 _四、解答题(5
6、小题,每小题8分,共计40分)1、已知二次函数()(1)求二次函数图象的对称轴;(2)若该二次函数的图象开口向上,当时,函数图象的最高点为,最低点为,点的纵坐标为,求点和点的坐标;(3)在(2)的条件下,对直线下方二次函数图象上的一点,若,求点的坐标 线 封 密 内 号学级年名姓 线 封 密 外 2、如图,在平面直角坐标系中,ABC的BC边与x轴重合,顶点A在y轴的正半轴上,线段OB,OC()的长是关于x的方程的两个根,且满足CO2AO(1)求直线AC的解析式;(2)若P为直线AC上一个动点,过点P作PDx轴,垂足为D,PD与直线AB交于点Q,设CPQ的面积为S(),点P的横坐标为a,求S与a
7、的函数关系式;(3)点M的坐标为,当MAB为直角三角形时,直接写出m的值3、某厂家生产一批遮阳伞,每个遮阳伞的成本价是20元,试销售时发现:遮阳伞每天的销售量y(个)与销售单价x(元)之间是一次函数关系,当销售单价为28元时,每天的销售量为260个;当销售单价为30元时,每天的销售量为240个(1)求遮阳伞每天的销出量y(个)与销售单价x(元)之间的函数关系式;(2)设遮阳伞每天的销售利润为w(元),当销售单价定为多少元时,才能使每天的销售利润最大?最大利润是多少元?4、某宾馆共有80间客房宾馆负责人根据经验作出预测:今年5月份,每天的房间空闲数y(间)与定价x(元/间)之间满足yx42(x1
8、68)若宾馆每天的日常运营成本为4000元,有客人入住的房间,宾馆每天每间另外还需支出36元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠(1)求入住房间z(间)与定价x(元/间)之间关系式;(2)应将房间定价确定为多少元时,获得利润最大?求出最大利润?5、某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(t)之间的关系为m500.2x,销售价y(万元/t)与原料的质量x(t)之间的关系如图所示(1)求y与x之间的函数关系式;(2)设销售收入为P(万元),求P与x之间的函数关系式;(3)原料的质量x为
9、多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润销售收入总支出)-参考答案-一、单选题1、D【解析】【分析】根据二次函数的解析式,得到a的值为2,图象开口向上,函数有最小值,根据定点坐标(4,6),即可得出函数的最小值【详解】解:在二次函数中,a=20,顶点坐标为(4,6),函数有最小值为6故选:D【考点】本题主要考查了二次函数的最值问题,关键是根据二次函数的解析式确定a的符号和根据顶点坐标求 线 封 密 内 号学级年名姓 线 封 密 外 出最值2、C【解析】【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解【详解】解:A是轴对称图形,不是中心对称图形,故本选项
10、不符合题意;B既不是轴对称图形,又不是中心对称图形,故本选项不符合题意;C既是轴对称图形,又是中心对称图形,故本选项符合题意;D不是轴对称图形,是中心对称图形,故本选项不符合题意故选:C【考点】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合3、B【解析】【分析】利用二次函数的定义逐项判断即可【详解】解:A、yx2+,含有分式,不是二次函数,故此选项错误;B、y2x2,是二次函数,故此选项正确;C、y,含有分式,不是二次函数,故此选项错误;D、y(x1)2x22x+1,是一次函数,故此选项错误
11、故选:B【考点】本题考查了二次函数的概念,属于应知应会题型,熟知二次函数的定义是解题关键4、D【解析】【分析】分别求出函数解析式的最小值、当0x1时端点值即:当x=0和x=1时的函数值由二次函数性质可知此函数最大值与最小值必是其中的两个,通过比较可知差值与p有关,但与q无关【详解】解:依题意得:当时,端点值,当时,端点值,当时,函数最小值,由二次函数的最值性质可知,当0x1时,此函数最大值和最小值是、其中的两个,所以最大值与最小值的差可能是或 或,故其差只含p不含q,故与p有关,但与q无关故选:【考点】本题考查了二次函数的最值问题,掌握二次函数的性质、灵活运用配方法是解题的关键5、D【解析】
12、线 封 密 内 号学级年名姓 线 封 密 外 【分析】设二次函数的解析式为:yax2bxc,根据题意列方程组即可得到结论【详解】解:设二次函数的解析式为:yax2+bx+c,当x55,y1800,当x75,y1800,当x80时,y1550, ,解得a2,b260,c6450,y与x的函数关系式是y2x2+260x64502(x65)2+2000,故选:D【考点】本题考查了根据实际问题列二次函数关系式,正确的列方程组是解题的关键二、多选题1、ABC【解析】【分析】(1)由图象可知抛物线与x轴的交点个数,从而确定相应的一元二次方程根的情况即可;(2)抛物线开口方向向上,即函数有最小值,从而知道选
13、项是否正确;(3)根据图象分析出函数的对称轴,然后分析出关于对称轴的对称点,即可知道对应的一元二次方程的两个根;(4)根据抛物线开口方向和对称轴,判断分析两点离对称轴的距离,即可得出结论【详解】解:A、根据函数对称性,二次函数图象与x轴有两个交点,即对应的一元二次方程有两个不相等的实数根,此时,即,选项正确;B、抛物线开口方向向上,即函数有最小值,所以,选项正确;C、由函数图象知,对称轴为,所以点与关于对称轴对称,即关于x的一元二次方程的两根分别是和,选项正确;D、因为抛物线开口向上,对称轴为,离对称轴的距离大于离对称轴的距离,所以,所以选项错误故选:ABC【点睛】本题考查二次函数图象性质、二
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-646178.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
