分享
分享赚钱 收藏 举报 版权申诉 / 33

类型2022年人教版九年级数学上册第二十三章旋转专项测试试题(含答案解析).docx

  • 上传人:a****
  • 文档编号:695659
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:33
  • 大小:906.47KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 年人教版 九年级 数学 上册 第二十三 旋转 专项 测试 试题 答案 解析
    资源描述:

    1、人教版九年级数学上册第二十三章旋转专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在下列图形中,既是轴对称图形,又是中心对称图形的是()A等边三角形B直角三角形C正五边形D矩形2、观察下列图案,能

    2、通过左图顺时针旋转90得到的()ABCD3、如图,已知正方形的边长为3,点E是边上一动点,连接,将绕点E顺时针旋转到,连接,则当之和取最小值时,的周长为()ABCD4、如图,将绕点逆时针旋转得到,若且于点,则的度数为()ABCD5、如图,OAB中,AOB=60,OA=4,点B的坐标为(6,0),将OAB绕点A逆时针旋转得到CAD,当点O的对应点C落在OB上时,点D的坐标为()A(7,3)B(7,5)C(5,5)D(5,3)6、下列交通标识中,不是轴对称图形,是中心对称图形的是()ABCD7、如图,在正方形ABCD中,将边BC绕点B逆时针旋转至,连接,若,则线段BC的长度为()A4B5CD8、将

    3、抛物线先绕坐标原点旋转,再向右平移个单位长度,所得抛物线的解析式为()ABCD9、如图,在中, 将绕点逆时针旋转得到,其中点与 点是对应点,且点在同一条直线上;则的长为()ABCD10、如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 ABCD的位置,旋转角为(090)若1112,则的大小是()A68B20C28D22第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最长距离,在平面内有一个正方形,边长为4,中心为O,在正方形外有一点P,OP=4,当正方形绕着点O旋转时,则点P到正方形的最长距离的最小值为_2、

    4、如图,菱形ABCD的边长为2,A60,E是边AB的中点,F是边AD上的一个动点,将线段EF绕着点E顺时针旋转60得到EG,连接DG、CG,则DG+CG的最小值为 _3、如图,在中,将绕点按逆时针方向旋转得到,连接,直线,相交于点,连接,在旋转过程中,线段的最大值为_4、若点与关于原点对称,则=_5、如图,两块完全一样的含30角的三角板完全重叠在一起,若绕长直角边中点M转动,使上面一块三角板的斜边刚好经过下面一块三角板的直角顶点,已知A30,BC2,则此时两直角顶点C,C间的距离是 _三、解答题(5小题,每小题10分,共计50分)1、如图,将矩形ABCD绕点A顺时针旋转得到矩形AEFG,其中点B

    5、的对应点E恰好落在边CD上,连结BG交AE于点G,连结BE(1)求证:BE平分AEC;(2)求证:BH=HG2、图1是边长分别为a和b(ab)的两个等边三角形纸片ABC和CDE叠放在一起(C与C重合)的图形(1)感知:固定ABC,将CDE绕点C按顺时针方向旋转20,连结AD,BE,如图2,则可证CBECAD,依据 ;进而得到线段BEAD,依据 (2)探究:若将图1中的CDE,绕点C按顺时针方向旋转120,使点B、C、D在同一条直线上,连结AD、BE,如图3线段BE与AD之间是否仍存在(1)中的结论?若是,请证明;若不是,请直接写出BE与AD之间的数量关系;APB的度数 (3)应用:若将图1中的

    6、CDE,绕点C按逆时针方向旋转一个角度(0360),当等于多少度时,BCD的面积最大?请直接写出答案3、如图,在中,将绕点A旋转一定的角度得到,且点E恰好落在边上(1)求证:平分;(2)连接,求证:4、如图,在等边中,D为BC边上一点,连接AD,将沿AD翻折得到,连接BE并延长交AD的延长线于点F,连接CF(1)若,求的度数;(2)若,求的大小;(3)猜想CF,BF,AF之间的数量关系,并证明5、如图,已知正方形点在边上,以为边在左侧作正方形;以为邻边作平行四边形连接 (1)判断和的数量及位置关系,并说明理由;(2)将绕点顺时针旋转,在旋转过程中,和的数量及位置关系是否发生变化?请说明理由-参

    7、考答案-一、单选题1、D【解析】【分析】根据轴对称图形和中心对称图形的概念逐一判断可得【详解】解:A等边三角形是轴对称图形,不是中心对称图形,不符合题意;B直角三角形既不是轴对称图形,也不是中心对称图形,不符合题意;C正五边形是轴对称图形,不是中心对称图形,不符合题意;D矩形既是轴对称图形,又是中心对称图形,符合题意;故选:D【考点】本题主要考查中心对称图形和轴对称图形,解题的关键是掌握把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形2、A【解析】【分析】根据旋转的

    8、定义,观察图形即可解答.【详解】根据旋转的定义,图片按顺时针方向旋转90度,大拇指指向右边,其余4个手指指向下边,从而可确定为A图故选A【考点】本题主要考查了旋转的性质,熟知性质是解题的关键.3、A【解析】【分析】连接 BF,过点F作FGAB交AB延长线于点G,通过证明AEDGFE(AAS),确定F点在BF的射线上运动;作点C关于BF的对称点C,由三角形全等得到CBF=45,从而确定C点在AB的延长线上;当D、F、C三点共线时,DF+CF=DC最小,在RtADC中,AD=3,AC=6,求出DC=3即可【详解】解:连接 BF,过点F作FGAB交AB延长线于点G,将ED绕点E顺时针旋转90到EF,

    9、EFDE,且EF=DE,AEDGFE(AAS),FG=AE,F点在BF的射线上运动,作点C关于BF的对称点C,EG=DA,FG=AE,AE=BG,BG=FG,FBG=45,CBF=45,BF是CBC的角平分线,即F点在CBC的角平分线上运动,C点在AB的延长线上,当D、F、C三点共线时,DF+CF=DC最小,在RtADC中,AD=3,AC=6,DC=3,DF+CF的最小值为3,此时的周长为故选:A【考点】本题考查了旋转的性质,正方形的性质,轴对称求最短路径;能够将线段的和通过轴对称转化为共线线段是解题的关键4、C【解析】【分析】由旋转的性质可得BAD=55,E=ACB=70,由直角三角形的性质

    10、可得DAC=20,即可求解【详解】解:将ABC绕点A逆时针旋转55得ADE,BAD=55,E=ACB=70,ADBC,DAC=20,BAC=BAD+DAC=75故选C【考点】本题考查了旋转的性质,掌握旋转的性质是本题的关键5、A【解析】【分析】如图,过点D作DEx轴于点E证明AOC是等边三角形,解直角三角形求出DE,CE,可得结论【详解】解:如图,过点D作DEx轴于点EB(6,0),OB=6,由旋转的性质可知AO=AC=4,OB=CD=6,ACD=AOB=60,AOC=60,AOC是等边三角形,OC=OA=4,ACO=60,DCE=60,CE=CD=3,DE=3,OE=OC+CE=4+3=7,

    11、D(7,3),故选:A【考点】本题考查了旋转变换,含30度角的直角三角形的性质,勾股定理,等边三角形的判定和性质等知识,解题的关键是掌握旋转变换的性质6、D【解析】【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:A是轴对称图形,不是中心对称图形,故本选项不符合题意;B既是轴对称图形,又是中心对称图形,故本选项不符合题意;C既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D不是轴

    12、对称图形,是中心对称图形,故本选项符合题意故选:D【考点】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合7、D【解析】【分析】根据旋转的性质,可知BCBC取点O为线段CC的中点,并连接BO根据等腰三角形三线合一的性质、正方形的性质及直角三角形的性质,可证得RtOBC RtCCD,从而证得OCCD,BOC C,再利用勾股定理即可求解【详解】解:如图,取点O为线段CC的中点,并连接BO依题意得,BCBCBOC CBOC90在正方形ABCD中,BCCD,BCD90OCBCCD90又C CD 90C

    13、DCCCD90OCBCDC在RtOBC和RtCCD中RtOBC RtCCD(AAS)OCCD2C C2 OC 224BOC C4在RtBOC中BC故选:D【考点】本题考查了旋转的性质、正方形的性质、等腰三角形的性质、直角三角形的性质、全等三角形的判定和性质及勾股定理的运用等知识,解题的关键是辅助线的添加8、C【解析】【分析】先根据点绕坐标原点旋转的坐标变换规律、待定系数法求出旋转后的抛物线的解析式,再根据二次函数的图象平移的规律即可得【详解】将抛物线的顶点式为则其与x轴的交点坐标为,顶点坐标为点绕坐标原点旋转的坐标变换规律:横、纵坐标均变为相反数则绕坐标原点旋转后,所得抛物线与x轴的交点坐标为

    14、,顶点坐标为设旋转后所得抛物线为将点代入得:,解得即旋转后所得抛物线为则再向右平移个单位长度,所得抛物线的解析式为即故选:C【考点】本题考查了点绕坐标原点旋转的坐标变换规律、待定系数法求二次函数解析式、二次函数的图象平移的规律,熟练掌握坐标旋转变换规律和二次函数的图象平移规律是解题关键9、A【解析】【分析】根据旋转的性质说明ACC是等腰直角三角形,且CAC=90,理由勾股定理求出CC值,最后利用BC=CC-CB即可【详解】解:根据旋转的性质可知AC=AC,ACB=ACB=45,BC=BC=1,ACC是等腰直角三角形,且CAC=90,CC=4,BC=4-1=3故选:A【考点】本题主要考查了旋转的

    15、性质、勾股定理,在解决旋转问题时,要借助旋转的性质找到旋转角和旋转后对应的量10、D【解析】【分析】利用矩形的性质、旋转的性质及多边形内角和定理即可求得【详解】四边形ABCD为矩形,BAD=ABC=ADC=90,矩形ABCD绕点A顺时针旋转到矩形ABCD的位置,旋转角为,BAB=,BAD=BAD=90,D=D=90,2=1=112,且ABC=D=90,BAB=90-68=22,即=22故选:D【考点】本题考查了旋转的性质,矩形的性质,多边形的内角和定理等知识,矩形性质的运用是关键二、填空题1、#【解析】【分析】由题意以及正方形的性质得OP过正方形ABCD的顶点时,点P到正方形的最长距离取得最小

    16、值,最小值为PA【详解】解:如图,OP过顶点A时,点O与这个图上所有点的连线中,OA最大,此时点P到正方形的最长距离取得最小值,最小值为PA,正方形ABCD边长为2,O为正方形中心,OAB=OBA=45,OACB,OA=OB=,OP=4,最小值为PA=4-;故答案为:4-【考点】本题考查了旋转的性质,正方形的性质,理解点到图形的距离是解题的关键2、【解析】【分析】取AD的中点N连接EN,EC,GN,作EHCB交CB的延长线于H根据菱形的性质,可得ADB是等边三角形,从而得到AEN是等边三角形,可证得AEFNEG,进而得到点G的运动轨迹是射线NG,继而得到GD+GCGE+GCEC,在RtBEH和

    17、RtECH中, 由勾股定理,即可求解【详解】如图,取AD的中点N连接EN,EC,GN,作EHCB交CB的延长线于H四边形ABCD是菱形ADAB,A60,ADB是等边三角形,ADBD,AEED,ANNB,AEAN,A60,AEN是等边三角形,AENFEG60,AEFNEG,EAEN,EFEG,AEFNEG(SAS),ENGA60,ANE60,GND180606060,点G的运动轨迹是射线NG,D,E关于射线NG对称,GDGE,GD+GCGE+GCEC,在RtBEH中,H90,BE1,EBH60,BHBE,EH,在RtECH中,EC,GD+GC,GD+GC的最小值为故答案为:【考点】本题主要考查了

    18、菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,勾股定理等知识,熟练掌握菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,勾股定理等知识是解题的关键3、【解析】【分析】取AB的中点H,连接CH、FH,设EC,DF交于点G,在ABC中,由勾股定理得到AB=,由旋转可知:DCEACB,从而DCA=BCE,ADC=BEC,由DGC=EGF,可得AFB=90,由直角三角形斜边上的中线等于斜边的一半,可得FH=CH=AB=,在FCH中,当F、C、H在一条直线上时,CF有最大值为.【详解】解:取AB的中点H,连接CH、FH,设EC,DF交于点G,在ABC中,ACB=90,AC=,BC

    19、=2,AB=,由旋转可知:DCEACB,DCE=ACB,DC=AC,CE=CB,DCA=BCE,ADC=(180-ACD) ,BEC= (180-BCE),ADC=BEC,DGC=EGF,DCG=EFG=90,AFB=90,H是AB的中点,FH=AB,ACB=90,CH=AB,FH=CH=AB=,在FCH中,FH+CHCF,当F、C、H在一条直线上时,CF有最大值,线段CF的最大值为.故答案为:【考点】本题考查了旋转的性质、勾股定理,解决本题的关键是掌握全等的性质.4、#0.5#【解析】【详解】解:点(a,1)与(2,b)关于原点对称,b=1,a=2,=故答案为:5、【解析】【分析】先求解,由

    20、旋转的性质可得可证是等边三角形,即可求的长【详解】解:如图,连接, 点M是AC中点, AM=CM=, 旋转, , ,是等边三角形 故答案为:【考点】本题考查了等边三角形的判定,勾股定理的应用,旋转的性质,熟练运用旋转的性质是解本题的关键三、解答题1、 (1)见详解(2)见详解【解析】【分析】(1)根据矩形ABCD绕点A顺时针旋转得到矩形AEFG,得出AB=AE,可得ABE=AEB,根据ABCD,得出CEB=ABE=AEB即可;(2)过B作BMAE于M,先证CEBMEB(AAS),再证BMHGAH(AAS)即可(1)证明:矩形ABCD绕点A顺时针旋转得到矩形AEFG,AB=AE,ABE=AEB,

    21、矩形ABCD,ABCD,CEB=ABE=AEB,BE平分AEC;(2)证明:过B作BMAE于M,四边形ABCD为矩形,C=90BC=AD,BME=C=90,在CEB和MEB中,CEBMEB(AAS),BC=BM,矩形ABCD绕点A顺时针旋转得到矩形AEFG,AD=AG,HAG=90,BM=GA,在BMH和GAH中,BMHGAH(AAS),BH=GH【考点】本题考查矩形性质,矩形旋转性质,等腰三角形判定与性质,平行线性质,角平分线判定,三角形全等判定与性质,掌握矩形性质,矩形旋转性质,等腰三角形判定与性质,平行线性质,角平分线判定,三角形全等判定与性质是解题关键2、(1)定理(两边和它们的夹角对

    22、应相等的两个三角形全等),全等三角形的对应边相等;(2)仍存在,证明见解析;(3)或【解析】【分析】(1)先根据等边三角形的性质可得,从而可得,再根据三角形全等的判定定理可证,然后根据全等三角形的性质可得;(2)先根据等边三角形的性质可得,从而可得,再根据三角形全等的判定定理可证,然后根据全等三角形的性质可得;先根据全等三角形的性质可得,再根据三角形的外角性质即可得;(3)先画出图形,过点作于点,再根据直角三角形的定义可得,然后根据三角形的面积公式和旋转角的定义即可得出答案【详解】解:(1)和都是等边三角形,即,在和中,故答案为:定理(两边和它们的夹角对应相等的两个三角形全等),全等三角形的对

    23、应边相等;(2)仍存在,证明如下:和都是等边三角形,即,在和中,;,故答案为:;(3)如图,过点作于点,当且仅当,即点与点重合时,等号成立,当时,的面积最大,此时旋转角或【考点】本题考查了等边三角形的性质、图形的旋转等知识点,正确找出全等三角形是解题关键3、 (1)证明见解析(2)证明见解析【解析】【分析】(1)根据旋转性质得到对应边相等,对应角相等,进而根据等边对等角性质可将角度进行等量转化,最后可证得结论(2)根据旋转性质以及三角形内角和定理对角度进行等量转化可证得结论(1)证明:由旋转性质可知:平分(2)证明:如图所示:由旋转性质可知:即在中,即【考点】本题考查了三角形的旋转变化,熟练掌

    24、握旋转前后图形的对应边相等,对应角相等以及合理利用三角形内角和定理是解决本题的关键4、(1)20;(2);(3)AF= CF+BF,理由见解析【解析】【分析】(1)由ABC是等边三角形,得到AB=AC,BAC=ABC=60,由折叠的性质可知,EAD=CAD=20,AC=AE,则BAE=BAC-EAD-CAD=20,AB=AE,CBF=ABE-ABC=20;(2)同(1)求解即可;(3)如图所示,将ABF绕点A逆时针旋转60得到ACG,先证明AEFACF得到AFE=AFC,然后证明AFE=AFC=60,得到BFC=120,即可证明F、C、G三点共线,得到AFG是等边三角形,则AF=GF=CF+C

    25、G=CF+BF【详解】解:(1)ABC是等边三角形,AB=AC,BAC=ABC=60,由折叠的性质可知,EAD=CAD=20,AC=AE,BAE=BAC-EAD-CAD=20,AB=AE,CBF=ABE-ABC=20;(2)ABC是等边三角形,AB=AC,BAC=ABC=60,由折叠的性质可知,AC=AE, ,AB=AE,;(3)AF= CF+BF,理由如下:如图所示,将ABF绕点A逆时针旋转60得到ACG,AF=AG,FAG=60,ACG=ABF,BF=CG在AEF和ACF中,AEFACF(SAS),AFE=AFC,CBF+BCF+BFD+CFD=180,CAF+CFA+ACD+CFD=18

    26、0,BFD=ACD=60,AFE=AFC=60,BFC=120,BAC+BFC=180,ABF+ACF=180,ACG+ACF=180,F、C、G三点共线,AFG是等边三角形,AF=GF=CF+CG=CF+BF【考点】本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键5、(1);理由见解析;(2)与的数量及位置关系都不变;答案见解析【解析】【分析】(1)证明,由全等三角形的性质得出,得出,则可得出结论;(2)证明,由全等三角形的性质得出,由平行线的性质证出,则可得出结论【详解】解:(1),由题意可得,平行四边形为矩形,设与交于点,则,即(2)与的数量及位置关系都不变如图,延长到点,四边形为平行四边形,又,即【考点】本题考查了旋转的性质,全等三角形的判定和性质,正方形的性质,解题的关键是:熟练掌握正方形的性质

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年人教版九年级数学上册第二十三章旋转专项测试试题(含答案解析).docx
    链接地址:https://www.ketangku.com/wenku/file-695659.html
    关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1