2023届高考数学一轮复习 近8年真题分类汇编 专题19 平面向量(1).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023届高考数学一轮复习 近8年真题分类汇编 专题19 平面向量1 2023 高考 数学 一轮 复习 年真题 分类 汇编 专题 19 平面 向量
- 资源描述:
-
1、专题19平面向量(1)考试说明:1、理解平面向量的概念,向量的几何表示;2、 掌握平面向量的加法、减法、数乘运算,及其几何意义;3、 了解平面向量共线定理、基本定理及其意义;4、 会用坐标表示平面向量的线性运算,以及共线的条件;5、 理解平面向量数量积的含义及其物理意义,并会用坐标表示数量积;6、 能运用数量积表示两个向量的夹角,会用数量积判断垂直关系;7、 会用向量方法解决某些简单的平面几何问题。高频考点:1、平面向量基本定理及其意义;2、 用坐标表示平面向量的加法、减法、数乘、数量积、夹角、模等运算;3、 平面向量数量积与三角函数、解三角形的综合应用。高考中,平面向量是必考的考点,一般以小
2、题的形式考查,有时考查基本的运算,属于基础题,有时考查综合题,难度不小,给大家把近几年的高考题总结如下,希望对同学们有所帮助。一、 典例分析1(2020新课标)已知向量,满足,则,ABCD2(2016山东)已知非零向量,满足,若,则实数的值为A4BCD3(2021上海)在中,为中点,为中点,则以下结论:存在,使得;存在,使得;它们的成立情况是A成立,成立B成立,不成立C不成立,成立D不成立,不成立4(2020山东)已知是边长为2的正六边形内的一点,则的取值范围是ABCD5(2018天津)在如图的平面图形中,已知,则的值为ABCD06(2017浙江)如图,已知平面四边形,与交于点,记,则ABCD
3、7(2016天津)已知是边长为1的等边三角形,点、分别是边、的中点,连接并延长到点,使得,则的值为ABCD8(2021新高考)(多选题)已知为坐标原点,点,则ABCD9(2021新高考)已知向量,则10(2020江苏)在中,在边上,延长到,使得若为常数),则的长度是 二、 真题集训1(2019新课标)已知非零向量,满足,且,则与的夹角为ABCD2(2018新课标)在中,为边上的中线,为的中点,则ABCD3(2015重庆)若非零向量,满足,且,则与的夹角为ABCD4(2016上海)设单位向量与既不平行也不垂直,对非零向量、有结论:若,则;若,则关于以上两个结论,正确的判断是A成立,不成立B不成立
4、,成立C成立,成立D不成立,不成立5(2020上海)三角形中,是中点,则6(2019天津)在四边形中,点在线段的延长线上,且,则7(2019江苏)如图,在中,是的中点,在边上,与交于点若,则的值是8(2017山东)已知, 是互相垂直的单位向量,若 与的夹角为,则实数的值是9(2017天津)在中,若,且,则的值为10(2017江苏)如图,在同一个平面内,向量,的模分别为1,1,与的夹角为,且,与的夹角为若,则11(2015四川)设四边形为平行四边形,若点、满足,则A20B15C9D612(2014上海)如图,四个边长为1的小正方形排成一个大正方形,是大正方形的一条边,2,是小正方形的其余顶点,则
5、,2,的不同值的个数为A7B5C3D1典例分析答案1(2020新课标)已知向量,满足,则,ABCD分析:利用已知条件求出,然后利用向量的数量积求解即可解答:解:向量,满足,可得,故选:点评:本题考查平面向量的数量积的应用,数量积的运算以及向量的夹角的求法,是中档题2(2016山东)已知非零向量,满足,若,则实数的值为A4BCD分析:若,则,进而可得实数的值解答:解:,解得:,故选:点评:本题考查的知识点是平面向量数量积的运算,向量垂直的充要条件,难度不大,属于基础题3(2021上海)在中,为中点,为中点,则以下结论:存在,使得;存在,使得;它们的成立情况是A成立,成立B成立,不成立C不成立,成
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
