分享
分享赚钱 收藏 举报 版权申诉 / 28

类型2022年人教版九年级数学上册第二十二章二次函数章节测评练习题(含答案详解).docx

  • 上传人:a****
  • 文档编号:695936
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:28
  • 大小:677.84KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 年人教版 九年级 数学 上册 第二十二 二次 函数 章节 测评 练习题 答案 详解
    资源描述:

    1、人教版九年级数学上册第二十二章二次函数章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在同一平面直角坐标系内,二次函数与一次函数的图象可能是()ABCD2、函数yax与yax2+a(a0)在同一直

    2、角坐标系中的大致图象可能是()ABCD3、已知二次函数(其中是自变量)的图象与轴没有公共点,且当时,随的增大而减小,则实数的取值范围是()ABCD4、已知二次函数y = ax2 + bx + c(a0)的图象如图所示,则下列结论:4a + 2b + c 0;y随x的增大而增大;方程ax2 + bx + c = 0两根之和小于零;一次函数y = ax + bc的图象一定不过第二象限,其中正确的个数是()A4个B3个C2个D1个5、抛物线y=(x2)21可以由抛物线y=x2平移而得到,下列平移正确的是()A先向左平移2个单位长度,然后向上平移1个单位长度B先向左平移2个单位长度,然后向下平移1个单

    3、位长度C先向右平移2个单位长度,然后向上平移1个单位长度D先向右平移2个单位长度,然后向下平移1个单位长度6、对于抛物线,下列说法正确的是()A抛物线开口向上B当时,y随x增大而减小C函数最小值为2D顶点坐标为(1,2)7、下列函数中,是二次函数的是()Ay6x2+1By6x+1CyDy+18、如图,抛物线与抛物线交于点,且它们分别与轴交于点、过点作轴的平行线,分别与两抛物线交于点、,则以下结论:无论取何值,总是负数;抛物线可由抛物线向右平移3个单位,再向下平移3个单位得到;当时,随着的增大,的值先增大后减小;四边形为正方形其中正确的是()ABCD9、已知二次函数的图像如图所示,有下列结论:;

    4、0;不等式0的解集为13,正确的结论个数是()A1B2C3D410、若二次函数y=ax2+bx+c的x与y的部分对应值如下表:则下列说法错误的是()x-10123yA二次函数图像与x轴交点有两个Bx2时y随x的增大而增大C二次函数图像与x轴交点横坐标一个在10之间,另一个在23之间D对称轴为直线x=1.5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、定义:由a,b构造的二次函数叫做一次函数yaxb的“滋生函数”,一次函数yaxb叫做二次函数的“本源函数”(a,b为常数,且)若一次函数yaxb的“滋生函数”是,那么二次函数的“本源函数”是_2、若二次函数图象的顶点在x轴

    5、上方,则实数m的取值范围是_3、已知关于的一元二次方程,有下列结论:当时,方程有两个不相等的实根;当时,方程不可能有两个异号的实根;当时,方程的两个实根不可能都小于1;当时,方程的两个实根一个大于3,另一个小于3以上4个结论中,正确的个数为_4、已知抛物线y=x2+2x3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m0)个单位长度,平移后的抛物线与x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,则m的值为_5、已知抛物线与x轴的一个交点为,则代数式的值为_三、解答题(5小题,每小题10分,共计50分)1、若二次函数图像经过,两点,求、的值.2、已知关

    6、于x的一元二次方程x2+xm=0(1)设方程的两根分别是x1,x2,若满足x1+x2=x1x2,求m的值(2)二次函数y=x2+xm的部分图象如图所示,求m的值3、渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克为增大市场占有率,在保证盈利的情况下,工厂采取降价措施批发价每千克降低1元,每天销量可增加50千克(1)写出工厂每天的利润元与降价元之间的函数关系当降价2元时,工厂每天的利润为多少元?(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元

    7、?4、已知抛物线(a,c为常数,)经过点,顶点为D()当时,求该抛物线的顶点坐标;()当时,点,若,求该抛物线的解析式;()当时,点,过点C作直线l平行于x轴,是x轴上的动点,是直线l上的动点当a为何值时,的最小值为,并求此时点M,N的坐标5、如图,在平面直角坐标系中,抛物线交轴于,两点,交轴于点,且,点是第三象限内抛物线上的一动点(1)求此抛物线的表达式;(2)若,求点的坐标;(3)连接,求面积的最大值及此时点的坐标-参考答案-一、单选题1、C【解析】【分析】根据一次函数和二次函数的图象和性质,分别判断a,b的符号,利用排除法即可解答【详解】解:A、由一次函数图象可知,a0,b0,由二次函数

    8、图象可知,a0,b0,不符合题意;B、由一次函数图象可知,a0,b0,由二次函数图象可知,a0,b0,不符合题意;C、由一次函数图象可知,a0,b0,由二次函数图象可知,a0,b0,符合题意;D、由一次函数图象可知,a0,b=0,由二次函数图象可知,a0,b0,不符合题意;故选:C【考点】本题考查二次函数的图象和一次函数的图象,解题的关键是明确一次函数和二次函数的性质2、D【解析】【分析】先根据一次函数的性质确定a0与a0两种情况分类讨论抛物线的顶点位置即可得出结论【详解】解:函数yax与yax2+a(a0)A. 函数yax图形可得a0,则yax2+a(a0)开口方向向下正确,当顶点坐标为(0

    9、,a),应交于y轴负半轴,而不是交y轴正半轴,故选项A不正确;B. 函数yax图形可得a0,则yax2+a(a0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是在坐标原点上,故选项B不正确;C. 函数yax图形可得a0,则yax2+a(a0)开口方向向上正确,当顶点坐标为(0,a),应交于y轴正半轴,故选项C不正确;D. 函数yax图形可得a0,则yax2+a(a0)开口方向向上正确,当顶点坐标为(0,a),应交于y轴正半轴正确,故选项D正确;故选D【考点】本题考查的知识点是一次函数的图象与二次函数的图象,理解掌握函数图象的性质是解此题的关键3、D【解析】【分析】由抛物线与

    10、轴没有公共点,可得,求得,求出抛物线的对称轴为直线,抛物线开口向上,再结合已知当时,随的增大而减小,可得,据此即可求得答案.【详解】,抛物线与轴没有公共点,解得,抛物线的对称轴为直线 ,抛物线开口向上,而当时,随的增大而减小,实数的取值范围是,故选D【考点】本题考查了二次函数图象与x轴交点问题,抛物线的对称轴,二次函数图象的增减性,熟练掌握和灵活运用相关知识是解题的关键.4、D【解析】【分析】根据函数的图象可知x=2时,函数值的正负性;并且可知与x轴有两个交点,即对应方程有两个实数根;函数的增减性需要找到其对称轴才知具体情况;由函数的图象还可知b、c的正负性,一次函数y=ax+bc所经过的象限

    11、进而可知正确选项【详解】当x=2时,y=4a+2b+c,对应的y值为正,即4a+2b+c0,故正确;因为抛物线开口向上,在对称轴左侧,y随x的增大而减小;在对称轴右侧,y随x的增大而增大,故错误;由二次函数y=ax2+bx+c(a0)的图象可知:函数图象与x轴有两个不同的交点,即对应方程有两个不相等的实数根,且正根的绝对值较大,方程ax2+bx+c=0两根之和大于零,故错误;由图象开口向上,知a0,与y轴交于负半轴,知c0,由对称轴,知b0,bc0,一次函数y=ax+bc的图象一定经过第二象限,故错误;综上,正确的个数为1个,故选:D【考点】本题考查了二次函数的图象与系数的关系以及一次函数的图

    12、象,利用了数形结合的思想,此类题涉及的知识面比较广,能正确观察图象是解本题的关键5、D【解析】【详解】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究详解:抛物线y=x2顶点为(0,0),抛物线y=(x2)21的顶点为(2,1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x2)21的图象故选D点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向6、B【解析】【分析】根据二次函数图象的性质对各项进行分析判断即可【详解】解:抛物线解析式可知,A、由于,故抛物线开口方向向下,选项不符合题意;B、抛物线对称轴为,结合其

    13、开口方向向下,可知当时,y随x增大而减小,选项说法正确,符合题意;C、由于抛物线开口方向向下,故函数有最大值,且最大值为-2,选项不符合题意;D、抛物线顶点坐标为(-1,-2),选项不符合题意故选:B【考点】本题主要考查了二次函数的性质,解题关键是熟练运用抛物线的开口方向、对称轴、顶点坐标以及二次函数图象的增减性解题7、A【解析】【分析】根据二次函数的定义求解【详解】解:A是二次函数,故本选项符合题意;B是一次函数,不是二次函数,故本选项不符合题意;C是反比例函数,不是二次函数,故本选项不符合题意;D等式的右边是分式,不是整式,不是二次函数,故本选项不符合题意;故选:A【考点】本题考查二次函数

    14、的基础知识,熟练掌握二次函数的意义是解题关键8、B【解析】【分析】根据非负数的相反数或者直接由图像判断即可;先求抛物线的解析式,再根据抛物线的顶点坐标,判断平移方向和平移距离即可判断;先根据题意得出时,观察图像可知,然后计算,进而根据一次函数的性质即可判断;分别计算出的坐标,根据正方形的判定定理进行判断即可【详解】,无论取何值,总是负数,故正确;抛物线与抛物线交于点,即,解得,抛物线,抛物线的顶点,抛物线的顶点为,将向右平移3个单位,再向下平移3个单位即为,即将抛物线向右平移3个单位,再向下平移3个单位可得到抛物线,故正确;,将代入抛物线,解得,将代入抛物线,解得,从图像可知抛物线的图像在抛物

    15、线图像的上方,当,随着的增大,的值减小,故不正确;设与轴交于点,由可知,当时,即,四边形是平行四边形,四边形是正方形,故正确,综上所述,正确的有,故选:B【考点】本题考查了二次函数图像与性质,一次函数的性质,平移,正方形的判定定理,解题的关键是综合运用以上知识9、A【解析】【分析】根据抛物线的开口方向、于x轴的交点情况、对称轴的知识可判的正误,再根据函数图象的特征确定出函数的解析式,进而确定不等式,最后求解不等式即可判定【详解】解:抛物线的开口向上,a0,故正确;抛物线与x轴没有交点0,故错误由抛物线可知图象过(1,1),且过点(3,3)8a+2b=24a+b=1,故错误;由抛物线可知顶点坐标

    16、为(1,1),且过点(3,3)则抛物线与直线y=x交于这两点0可化为,根据图象,解得:1x3故错误故选A【考点】本题主要考查了二次函数图象的特征以及解不等式的相关知识,灵活运用二次函数图象的特征成为解答本题的关键10、D【解析】【分析】根据x=1时的函数值最小判断出抛物线的开口方向; 根据函数的对称性可知当x=2时的函数值与x=0时的函数值相同, 并求出对称轴直线方程可得答案.【详解】A、由图表数据可知x=1时, y的值最小, 所以抛物线开口向上. 所以该抛物线与x轴有两个交点.故本选项正确;B、根据图表知, 当x2时y随x的增大而增大.故本选项正确;C、抛物线的开口方向向上, 抛物线与y轴的

    17、交点坐标是(0,),对称轴是x=1,所以二次函数图象与x轴交点横坐标一个在-10之间, 另一个在23之间. 故本选项正确;D、因为x=0和x=2 时的函数值相等,则抛物线的对称轴为直线x=1. 故本选项错误;故选:D.【考点】本题主要考查二次函数性质与二次函数的最值.二、填空题1、【解析】【分析】由“滋生函数”和“本源函数”的定义,运用待定系数法求出函数的本源函数【详解】解:由题意得解得函数的本源函数是故答案为:【考点】本题考查新定义运算下的一次函数和二次函数的应用,解题关键是充分理解新定义“本源函数”2、【解析】【分析】先求出顶点坐标,再令顶点的纵坐标大于0即可求解【详解】解:二次函数的对称

    18、轴为,当时,顶点坐标为,顶点在x轴上方,即,故答案为:【考点】本题考查二次函数的顶点坐标,掌握求二次函数顶点坐标的方法是解题的关键3、【解析】【分析】由根的判别式,根与系数的关系进行判断,即可得到答案【详解】解:根据题意,一元二次方程,;当,即时,方程有两个不相等的实根;故正确;当,解得:,方程有两个同号的实数根,则当时,方程可能有两个异号的实根;故错误;抛物线的对称轴为:,则当时,方程的两个实根不可能都小于1;故正确;由,则,解得:或;故正确;正确的结论有;故答案为:【考点】本题考查了二次函数的性质,一元二次方程根的判别式,根与系数的关系,解题的关键是掌握所学的知识进行解题4、2或8【解析】

    19、【分析】分两种情况:当点C在点B左侧时,如图,先根据三等分点的定义得:AC=BC=BD,由平移m个单位可知:AC=BD=m,计算点A和B的坐标可得AB的长,进一步即可求出m的值;当点C在点B右侧时,根据m=2AB求解即可【详解】解:如图,当点C在点B左侧时,B,C是线段AD的三等分点,AC=BC=BD,由题意得:AC=BD=m,当y=0时,x2+2x3=0,解得:x1=1,x2=3,A(3,0),B(1,0),AB=3+1=4,AC=BC=2,m=2;当点C在点B右侧时,AB=BC=CD=4,m=AB+BC=4+4=8;故答案为:2或8【考点】本题考查了抛物线与x轴的交点、抛物线的平移及解一元

    20、二次方程等知识,属于常考题型,利用数形结合的思想和三等分点的定义解决问题是关键5、2019【解析】【分析】先将点(m,0)代入函数解析式,然后求代数式的值即可得出结果【详解】解:将(m,0)代入函数解析式得,m2-m-1=0,m2-m=1,-3m2+3m+2022=-3(m2-m)+2022=-3+2022=2019故答案为:2019【考点】本题考查了二次函数图象上点的坐标特征及求代数式的值,解题的关键是将点(m,0)代入函数解析式得到有关m的代数式的值三、解答题1、b=-3,c=-4.【解析】【分析】将,代入中,求解二元一次方程组即可解题.【详解】解:将,代入中得, 解得: b=-3,c=-

    21、4.【考点】本题考查了含参数的二次函数的求解,属于简单题,熟悉求解二元一次方程组的方法是解题关键.2、 (1)(2)【解析】【分析】(1)根据根与系数的关系求得x1+x2、x1x2,然后代入列出方程,通过解方程来求m的值;(2)把点(1,0)代入抛物线解析式,求得m的值(1)解:由题意得:x1+x2=-1,x1x2=-m,-1=-mm=1当m=1时,x2+x-1=0,此时=1+4m=1+4=50,符合题意m=1;(2)解:图象可知:过点(1,0),当x=1,y=0,代入y=x2+x-m,得12+1-m=0m=2【考点】本题主要考查了抛物线与x轴的交点,根与系数的关系,解题的关键是掌握如果x1,

    22、x2是一元二次方程ax2+bx+c=0的两根,那么有x1+x2=-,x1x2=3、(1),9600;(2)降价4元,最大利润为9800元;(3)43【解析】【分析】(1)若降价元,则每天销量可增加千克,根据利润公式求解并整理即可得到解析式,然后代入求出对应函数值即可;(2)将(1)中的解析式整理为顶点式,然后利用二次函数的性质求解即可;(3)令可解出对应的的值,然后根据“让利于民”的原则选择合适的的值即可【详解】(1)若降价元,则每天销量可增加千克,整理得:,当时,每天的利润为9600元;(2),当时,取得最大值,最大值为9800,降价4元,利润最大,最大利润为9800元;(3)令,得:,解得

    23、:,要让利于民,(元)定价为43元【考点】本题考查二次函数的实际应用,弄清数量关系,准确求出函数解析式并熟练掌握二次函数的性质是解题关键4、()抛物线的顶点坐标为;()或;()点M的坐标为,点N的坐标为【解析】【分析】()结合题意,通过列一元一次方程并求解,即可得到抛物线的解析式,将解析式化为顶点式,即可得到答案()根据题意,得抛物线的解析式为;根据抛物线对称轴的性质,计算得点D的坐标为;过点D作轴于点G,根据勾股定理和一元二次方程的性质,得,从而得到答案;()当时,将点向左平移3个单位长度,向上平移1个单位长度得;作点F关于x轴的对称点,当满足条件的点M落在线段上时,根据两点之间线段最短的性

    24、质,得最小,结合题意,根据勾股定理和一元二次方程性质,得,从而得直线的解析式,通过计算即可得到答案【详解】()当时,抛物线的解析式为抛物线经过点解得:抛物线的解析式为抛物线的顶点坐标为;()当时,由抛物线经过点,可知抛物线的解析式为抛物线的对称轴为:当时,抛物线的顶点D的坐标为;过点D作轴于点G在中,在中,即,解得:,抛物线的解析式为或()当时,将点向左平移3个单位长度,向上平移1个单位长度得作点F关于x轴的对称点,得点的坐标为当满足条件的点M落在线段上时,最小,此时,过点作轴于点H在中,又,即解得:,(舍)点的坐标为,点的坐标为直线的解析式为当时,点M的坐标为,点N的坐标为【考点】本题考查了

    25、二次函数、一元一次方程、勾股定理、一元二次方程、平移、两点之间线段最短的知识;解题的关键是熟练掌握二次函数、勾股定理、一元二次方程、平移的性质,从而完成求解5、(1);(2)(,);(3)面积的最大值是8;点的坐标为(,)【解析】【分析】(1)由二次函数的性质,求出点C的坐标,然后得到点A、点B的坐标,再求出解析式即可;(2)由,则点P的纵坐标为,代入解析式,即可求出点P的坐标;(3)先求出直线AC的解析式,过点P作PDy轴,交AC于点D,则,设点P为(,),则点D为(,),求出PD的长度,利用二次函数的性质,即可得到面积的最大值,再求出点P的坐标即可【详解】解:(1)在抛物线中,令,则,点C的坐标为(0,),OC=2,点A为(,0),点B为(,0),则把点A、B代入解析式,得,解得:,;(2)由题意,点C为(0,),点P的纵坐标为,令,则,解得:,点P的坐标为(,);(3)设直线AC的解析式为,则把点A、C代入,得,解得:,直线AC的解析式为;过点P作PDy轴,交AC于点D,如图:设点P 为(,),则点D为(,),OA=4,当时,取最大值8;,点P的坐标为(,)【考点】本题考查了二次函数的综合问题,二次函数的性质,一次函数的性质,解题的关键是熟练掌握二次函数和一次函数的性质进行解题,注意利用数形结合的思想进行解题

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年人教版九年级数学上册第二十二章二次函数章节测评练习题(含答案详解).docx
    链接地址:https://www.ketangku.com/wenku/file-695936.html
    相关资源 更多
  • 九年级化学上册6.1金刚石石墨和C60习题1新人教版.docx九年级化学上册6.1金刚石石墨和C60习题1新人教版.docx
  • 九年级化学上册 绪言 化学使世界变得更加绚丽多彩学案(无答案)(新版)新人教版.docx九年级化学上册 绪言 化学使世界变得更加绚丽多彩学案(无答案)(新版)新人教版.docx
  • 九年级化学上册 第四单元 课题4《化学式与化合价》练习(无答案) 新人教版.docx九年级化学上册 第四单元 课题4《化学式与化合价》练习(无答案) 新人教版.docx
  • 九年级化学上册 第四单元 课题4 化学式与化合价导学案(无答案)(新版)新人教版.docx九年级化学上册 第四单元 课题4 化学式与化合价导学案(无答案)(新版)新人教版.docx
  • 九年级化学上册 第四单元 课题3《离子》练习(无答案) 新人教版.docx九年级化学上册 第四单元 课题3《离子》练习(无答案) 新人教版.docx
  • 九年级化学上册 第四单元 课题3 水的组成导学案(无答案)(新版)新人教版.docx九年级化学上册 第四单元 课题3 水的组成导学案(无答案)(新版)新人教版.docx
  • 九年级化学上册 第四单元 课题2《元素》练习(无答案) 新人教版.docx九年级化学上册 第四单元 课题2《元素》练习(无答案) 新人教版.docx
  • 九年级化学上册 第四单元 课题1《原子的构成》练习(无答案) 新人教版.docx九年级化学上册 第四单元 课题1《原子的构成》练习(无答案) 新人教版.docx
  • 九年级化学上册 第四单元 自然界的水教案 (新版)新人教版.docx九年级化学上册 第四单元 自然界的水教案 (新版)新人教版.docx
  • 九年级化学上册 第四单元 自然界的水 课题1 爱护水资源练习2 (新版)新人教版.docx九年级化学上册 第四单元 自然界的水 课题1 爱护水资源练习2 (新版)新人教版.docx
  • 九年级化学上册 第六单元 课题3《二氧化碳和一氧化碳》练习(无答案) 新人教版.docx九年级化学上册 第六单元 课题3《二氧化碳和一氧化碳》练习(无答案) 新人教版.docx
  • 九年级化学上册 第六单元 课题2《二氧化碳制取的研究》练习(无答案) 新人教版.docx九年级化学上册 第六单元 课题2《二氧化碳制取的研究》练习(无答案) 新人教版.docx
  • 九年级化学上册 第六单元 碳和碳的氧化物 实验活动2 二氧化碳的实验室制取与性质练习 (新版)新人教版.docx九年级化学上册 第六单元 碳和碳的氧化物 实验活动2 二氧化碳的实验室制取与性质练习 (新版)新人教版.docx
  • 九年级化学上册 第五单元 课题3《利用化学方程式的简单计算》练习(无答案) 新人教版.docx九年级化学上册 第五单元 课题3《利用化学方程式的简单计算》练习(无答案) 新人教版.docx
  • 九年级化学上册 第五单元 课题1《质量守恒定律》练习(无答案) 新人教版.docx九年级化学上册 第五单元 课题1《质量守恒定律》练习(无答案) 新人教版.docx
  • 九年级化学上册 第五单元 化学方程式 课题1 质量守恒定律练习2 (新版)新人教版.docx九年级化学上册 第五单元 化学方程式 课题1 质量守恒定律练习2 (新版)新人教版.docx
  • 九年级化学上册 第五单元 化学方程式 课题1 质量守恒定律练习1 (新版)新人教版.docx九年级化学上册 第五单元 化学方程式 课题1 质量守恒定律练习1 (新版)新人教版.docx
  • 九年级化学上册 第二单元 课题3《制取氧气》练习(无答案) 新人教版.docx九年级化学上册 第二单元 课题3《制取氧气》练习(无答案) 新人教版.docx
  • 九年级化学上册 第二单元 课题3 制取氧气导学案(无答案)(新版)新人教版.docx九年级化学上册 第二单元 课题3 制取氧气导学案(无答案)(新版)新人教版.docx
  • 九年级化学上册 第二单元 课题2《氧气》练习(无答案) 新人教版.docx九年级化学上册 第二单元 课题2《氧气》练习(无答案) 新人教版.docx
  • 九年级化学上册 第二单元 课题1《空气》练习(无答案) 新人教版.docx九年级化学上册 第二单元 课题1《空气》练习(无答案) 新人教版.docx
  • 九年级化学上册 第二单元 课题1 空气导学案(无答案)(新版)新人教版.docx九年级化学上册 第二单元 课题1 空气导学案(无答案)(新版)新人教版.docx
  • 九年级化学上册 第二单元 我们周围的空气教案 (新版)新人教版.docx九年级化学上册 第二单元 我们周围的空气教案 (新版)新人教版.docx
  • 九年级化学上册 第二单元 我们周围的空气复习学案(无答案)(新版)新人教版.docx九年级化学上册 第二单元 我们周围的空气复习学案(无答案)(新版)新人教版.docx
  • 九年级化学上册 第二单元 我们周围的空气 课题2 氧气练习4 (新版)新人教版.docx九年级化学上册 第二单元 我们周围的空气 课题2 氧气练习4 (新版)新人教版.docx
  • 九年级化学上册 第二单元 我们周围的空气 课题2 氧气练习3 (新版)新人教版.docx九年级化学上册 第二单元 我们周围的空气 课题2 氧气练习3 (新版)新人教版.docx
  • 九年级化学上册 第二单元 我们周围的空气 课题2 氧气练习 (新版)新人教版.docx九年级化学上册 第二单元 我们周围的空气 课题2 氧气练习 (新版)新人教版.docx
  • 九年级化学上册 第二单元 我们周围的空气 课题1 空气习题4 (新版)新人教版.docx九年级化学上册 第二单元 我们周围的空气 课题1 空气习题4 (新版)新人教版.docx
  • 九年级化学上册 第二单元 我们周围的空气 课题1 空气习题3 (新版)新人教版.docx九年级化学上册 第二单元 我们周围的空气 课题1 空气习题3 (新版)新人教版.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1