分享
分享赚钱 收藏 举报 版权申诉 / 24

类型2022年人教版八年级数学上册第十一章三角形定向测评试卷(解析版含答案).docx

  • 上传人:a****
  • 文档编号:696351
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:24
  • 大小:468.87KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 年人教版 八年 级数 上册 第十一 三角形 定向 测评 试卷 解析 答案
    资源描述:

    1、人教版八年级数学上册第十一章三角形定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,C=90,点D在AC上,DEAB,若CDE=165,则B的度数为()A15B55C65D752、

    2、下列说法不正确的是()A三角形的中线在三角形的内部B三角形的角平分线在三角形的内部C三角形的高在三角形的内部D三角形必有一高线在三角形的内部3、在中,若一个内角等于另外两个角的差,则()A必有一个角等于B必有一个角等于C必有一个角等于D必有一个角等于4、如图所示的图形中具有稳定性的是()ABCD5、若一个正多边形的一个外角是60,则这个正多边形的边数是()A10B9C8D66、如图,AOB是一钢架,AOB15,为使钢架更加牢固,需在其内部添加一些钢管EF、FG、GH添的钢管长度都与OE相等,则最多能添加这样的钢管()根A2B4C5D无数7、将一副直角三角板按如图所示的位置摆放,使得它们的直角边

    3、互相垂直,则的度数是()ABCD8、下列长度的三条线段,能组成三角形的是()A4cm,5cm,9cmB8cm,8cm,15cmC5cm,5cm,10cmD6cm,7cm,14cm9、下列说法中错误的是( )A三角形的一个外角大于任何一个内角B有一个内角是直角的三角形是直角三角形C任意三角形的外角和都是D三角形的中线、角平分线,高线都是线段10、在下列条件中:ABC;AB2C;ABaC;ABC123,能确定ABC为直角三角形的条件有()A1个B2个C3个D4个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图是由一副三角板拼凑得到的图中的ABC的度数为_2、如图,ABC

    4、的中线BD、CE相交于点F,若BEF的面积是3,则ABC的面积是_3、如图,BE、CE分别为的内、外角平分线,BF、CF分别为的内、外角平分线,若,则_度4、如图,直线AB、CD相交于点O,BOC,点F在直线AB上且在点O的右侧,点E在射线OC上,连接EF,直线EM、FN交于点G若MEFnCEF,NFE(12n)AFE,且EGF的度数与AFE的度数无关,则EGF=_(用含有的代数式表示)5、如图,A、B、C均为一个正十边形的顶点,则ACB=_三、解答题(5小题,每小题10分,共计50分)1、如图,为的中线,为的中线(1),求 的度数;(2)若的面积为40,则到边的距离为多少2、(1)求12边形

    5、内角和度数;(2)若一个n边形的内角和与外角和的差是720,求n3、已知点A在平面直角坐标系中第一象限内,将线段AO平移至线段BC,其中点A与点B对应 (1)如图(1),若,连接AB,AC,在坐标轴上存在一点D,使得,求点D的坐标;(2)如图(2),若,点P为y轴上一动点(点P不与原点重合),请直接写出与之间的数量关系(不用证明)4、在探索并证明三角形的内角和定理“三角形三个内角的和等于180”时,圆圆同学添加的辅助线为“过点A作直线DE / BC”请写出“已知”、“求证”,并补全证明已知:求证:证明:过点A作直线DE / BC5、请阅读下列材料,并完成相应的任务:有趣的“飞镖图”如图,这种形

    6、似飞镖的四边形,可以形象地称它为“飞镖图”当我们仔细观察后发现,它实际上就是凹四边形那么它具有哪些性质呢?又将怎样应用呢?下面我们进行认识与探究:凹四边形通俗地说,就是一个角“凹”进去的四边形,其性质有:凹四边形中最大内角外面的角等于其余三个内角之和(即如图 1,ADB=ABC )理由如下:方法一:如图 2,连接 AB,则在ABC 中,C+CAB+CBA=180,即1+2+3+4+C=180,又在ABD 中,1+2+ADB=180,ADB=3+4+C, 即ADB=CAD+CBD+C方法二:如图 3,连接 CD 并延长至 F,1 和3 分别是ACD 和BCD 的一个外角,. . . . . .大

    7、家在探究的过程中,还发现有很多方法可以证明这一结论,你有自己的方法吗?任务:(1)填空:“方法一”主要依据的一个数学定理是 ;(2)探索:根据“方法二”中辅助线的添加方式,写出该证明过程的剩余部分;(3)应用:如图 4,AE 是CAD 的平分线,BF 是CBD 的平分线,AE 与 BF 交于 G, 若ADB=150,AGB=110,请你直接写出C 的大小-参考答案-一、单选题1、D【解析】【分析】根据邻补角定义可得ADE=15,由平行线的性质可得A=ADE=15,再根据三角形内角和定理即可求得B=75【详解】解:CDE=165,ADE=15,DEAB,A=ADE=15,B=180CA=1809

    8、015=75,故选D【考点】本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键2、C【解析】【详解】A.三角形的中线在三角形的内部正确,故本选项错误;B.三角形的角平分线在三角形的内部正确,故本选项错误;C.只有锐角三角形的三条高在三角形的内部,故本选项正确;D.三角形必有一高线在三角形的内部正确,故本选项错误故选:C. 3、D【解析】【分析】先设三角形的两个内角分别为x,y,则可得第三个角(180xy),再分三种情况讨论,即可得到答案.【详解】设三角形的一个内角为x,另一个角为y,则第三个角为(180xy),则有三种情况:综上所述,必有一个角等于

    9、90故选D.【考点】本题考查三角形内角和的性质,解题的关键是熟练掌握三角形内角和的性质,分情况讨论.4、B【解析】【分析】根据三角形具有稳定性,只要图形分割成了三角形,则具有稳定性【详解】解:因为三角形具有稳定性,四边形不具有稳定性,一个多边形从一个顶点出发引出的对角线将其分成个三角形,此时这个多边形就具有稳定性了,图便具有稳定性,故选B【考点】此题考查了三角形的稳定性和四边形的不稳定性,注意根据三角形的稳定性进行判断5、D【解析】【分析】根据多边形的外角和等于360计算即可【详解】解:360606,即正多边形的边数是6故选:D【考点】本题考查了多边形的外角和定理,掌握多边形的外角和等于360

    10、,正多边形的每个外角都相等是解题的关键6、C【解析】【详解】分析:因为每根钢管的长度相等,可推出图中的5个三角形都为等腰三角形,再根据外角性质,推出最大的0BQ的度数(必须90),就可得出钢管的根数详解:如图所示,AOB=15,OE=FE,GEF=EGF=152=30,EF=GF,所以EGF=30GFH=15+30=45GH=GFGHF=45,HGQ=45+15=60GH=HQ,GQH=60,QHB=60+15=75,QH=QBQBH=75,HQB=180-75-75=30,故OQB=60+30=90,不能再添加了故选C点睛:根据等腰三角形的性质求出各相等的角,然后根据三角形内角和外角的关系解

    11、答7、C【解析】【分析】根据题意求出、,根据对顶角的性质、三角形的外角性质计算即可【详解】由题意得,由三角形的外角性质可知,故选C【考点】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键8、B【解析】【详解】分析:结合“三角形中较短的两边之和大于第三边”,分别套入四个选项中得三边长,即可得出结论详解:A、5+4=9,9=9,该三边不能组成三角形,故此选项错误;B、8+8=16,1615,该三边能组成三角形,故此选项正确;C、5+5=10,10=10,该三边不能组成三角形,故此选项错误;D、6+7=13,1314,该三边不能组成三角形,故此选项错误;故选

    12、B点睛:本题考查了三角形的三边关系,解题的关键是:用较短的两边长相交于第三边作比较本题属于基础题,难度不大,解决该题型题目时,结合三角形三边关系,代入数据来验证即可9、A【解析】【分析】根据三角形的性质判断选项的正确性【详解】A选项错误,钝角三角形的钝角的外角小于内角;B选项正确;C选项正确;D选项正确故选:A【考点】本题考查三角形的性质,解题的关键是掌握三角形的各种性质10、B【解析】【详解】分析:根据所给的4个条件分别求出4个条件下ABC中的最大角的度数,再进行判断即可.详解:A+B=C,A+B+C=180,C=180=90,此时ABC是直角三角形;A=B=2C,A+B+C=180,5C=

    13、180,解得C=36,A=B=72,此时ABC不是直角三角形;ABaC,A+B+C=180,(2a+1)C=180,解得C=,A=B=,此时ABC中三个内角的度数是不确定的,不能确定ABC是否是直角三角形;ABC123,A+B+C=180,C=180=90,此时ABC是直角三角形.综上所述,根据上述条件能够确定ABC是直角三角形的有2个.故选B.点睛:本题的解题要点是:“根据已知条件结合三角形内角和是180确定出ABC的最大角的度数即可判断此时ABC是否是直角三角形了”.二、填空题1、75度#75【解析】【分析】由F=30,EAC=45,即可求得ABF的度数,又由FBC=90,易得ABC的度数

    14、【详解】解:F=30,EAC=45,ABF=EAC-F=45-30=15,FBC=90,ABC=FBC-ABF=90-15=75.故答案为:75.【考点】此题考查了三角形的外角的性质,注意数形结合思想的应用2、18【解析】【分析】由题意可知F为重心,则根据重心的性质有,又BEF与BCF等高,SBEF=3,立得SBFC=6,所以SBEC=9,最后根据三角形中线的性质求ABC面积即可【详解】解:ABC的中线BD、CE相交于点F,则点F为ABC的重心,由重心的性质可得:,BEF与BCF等高,SBEF=3,SBFC=6,则SBEC=SBEF+SBFC=3+6=9,又E为AB中点,SABC=2SBEC=

    15、29=18故答案为:18【考点】此题考查了三角形中线的性质以及三角形重心的性质,解题的关键是熟知重心到顶点的距离与重心到对边中点的距离之比为2:13、13【解析】【分析】根据BF,CF分别为EBC的内、外角平分线分别设,再根据BE,CE分别为ABC的内,外角平分线,得到和 ,最后根据 和 求出 即可【详解】BF,CF分别为的内、外角平分线,设,又BE,CE分别为的内,外角平分线,又,又,故答案为:13【考点】此题考查了三角形内角和外角角平分线的相关知识,涉及到三角形外角等于与其不相邻的两内角和的知识,有一定难度4、#3【解析】【分析】利用三角形外角的性质:三角形的一个外角等于和它不相邻的两个内

    16、角和,以及三角形内角和定理求解【详解】解:CEFAFE+BOC,BOC,CEF+AFE,MEFnCEF,MEFn(+AFE),EGFMEFNFE,EGFn(+AFE)(12n)AFEn+(3n1)AFE,EGF的度数与AFE的度数无关,3n10,即n,EGF;故答案为:【考点】此题考查了三角形外角的性质及角度计算,解题的关键是理解EGF的度数与AFE的度数无关的含义5、【解析】【分析】根据正多边形外角和和内角和的性质,得、;根据四边形内角和的性质,计算得;根据五边形内角和的性质,计算得,再根据三角形外角的性质计算,即可得到答案【详解】如图,延长BA正十边形,正十边形内角,即 根据题意,得四边形

    17、内角和为:,且 根据题意,得五边形内角和为:,且 故答案为:【考点】本题考查了正多边形、三角形外角的知识;解题的关键是熟练掌握正多边形外角和、正多边形内角和的性质,从而完成求解三、解答题1、(1);(2)4【解析】【分析】(1)根据三角形内角与外角的性质解答即可;(2)过作边的垂线即可得:到边的距离为的长,然后过作边的垂线,再根据三角形中位线定理求解即可【详解】解:(1)是的外角,;(2)过作边的垂线,为垂足,则为所求的到边的距离,过作边的垂线,为的中线,的面积为40,即,解得,为的中线,又为的中线,则有:即到边的距离为4【考点】本题考查了三角形外角的性质、三角形中位线的性质及三角形的面积公式

    18、,添加适当的辅助线是解题的关键2、(1)1800;(2)8【解析】【分析】(1)根据内角和公式,可得答案;(2)根据多边形内角和公式(n-2)180可得内角和,再根据外角和为360可得方程(n-2)180-360=720,再解方程即可【详解】解:(1)由题意,得(12-2)180=1800;(2)由题意得:(n-2)180-360=720,3、(1)点D的坐标为或或或;(2)与的数量关系是或或【解析】【分析】(1)先根据A,B的坐标找到平移规律,从而求出C的坐标,进而的面积和的面积可求,则点D的坐标可求;(2)分两种情况讨论:当P在y轴的正半轴上时和当P在y轴的负半轴上时,分情况进行讨论即可【

    19、详解】(1)由线段平移,点的对应点为,知线段AO先向石平移2个单位,再向下平移3个单位,则点平移后的坐标为,即,点A到x轴的距离为3,到y轴的的距离为1,若点D在x轴上, 点D的坐标为或若点D在y轴上, 点D为或综上所述,点D的坐标为或或或(2)如图,延长BC交y轴于点E且,,分两种情况讨论:(1)当P在y轴的正半轴上时,(2)当P在y轴的负半轴上时,若P在点E上方(含与点E重台)时,即若P在点E下方时,即综合可得与的数量关系是或或【考点】本题主要考查点的平移与几何综合,掌握点的平移规律,并分情况讨论是解题的关键4、已知:如图,;求证:;证明见解析【解析】【分析】根据平行线的性质和平角的定义即

    20、可证明【详解】已知:如图,求证:证明:如图,过点A作直线DE / BCDE / BC,(两直线平行,内错角相等) (平角定义),即三角形内角和为【考点】本题考查三角形内角和定理的证明,平行线的性质,平角的定义掌握两直线平行,内错角相等是解题关键5、 (1)三角形内角和定理(或三角形的内角和等于 180);(2)见解析;(3)70【解析】【分析】(1)根据三角形内角和定理,即可求解;(2)根据三角形外角的性质可得1=2+A,3=4+B,从而得到1+3=2+A+4+B,即可求证;(3)由(2)可得:ADB=CAD+CBD+C,AGB=CAE+CBF+C,从而得到CAE+CBF=110- C,CAD

    21、+CBD=150-C,再由AE 是CAD 的平分线,BF 是CBD 的平分线,可得150-C=2(110- C),即可求解(1)解:三角形内角和定理(或三角形的内角和等于 180)(2)证明:连接 CD 并延长至 F,1 和2 分别是ACD 和BCD 的一个外角,1=2+A,3=4+B,1+3=2+A+4+B,即ADB=A+B+ACB ;(3)解:由(2)得:ADB=CAD+CBD+C,AGB=CAE+CBF+C,ADB=150,AGB=110,CAD+CBD+C=150,CAE+CBF+C=110,CAE+CBF=110- C,CAD+CBD=150-C,AE 是CAD 的平分线,BF 是CBD 的平分线,CAD =2CAE,CBD=2CBF,CAD+CBD=2(CAE+CBF),150-C=2(110- C),解得:C=70【考点】本题主要考查了三角形的内角和定理,三角形外角的性质,有关角平分线的计算,熟练掌握三角形内角和定理,三角形的一个外角等于与它不相邻的两个内角的和是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年人教版八年级数学上册第十一章三角形定向测评试卷(解析版含答案).docx
    链接地址:https://www.ketangku.com/wenku/file-696351.html
    关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1