分享
分享赚钱 收藏 举报 版权申诉 / 26

类型2022年强化训练人教版数学八年级上册期中考试题 A卷(含详解).docx

  • 上传人:a****
  • 文档编号:702510
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:26
  • 大小:713.11KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年强化训练人教版数学八年级上册期中考试题 A卷含详解 2022 强化 训练 人教版 数学 年级 上册 期中 考试题 详解
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中考试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图

    2、),则d可能是()A1B2C7D82、若菱形ABCD的一条对角线长为8,边CD的长是方程x210x+240的一个根,则该菱形ABCD的周长为()A16B24C16或24D483、如图,中,是延长线上一点,且,则的度数是()ABCD4、如图,在中,连接BC,CD,则的度数是()A45B50C55D805、下列说法中正确的是()A三角形的三条中线必交于一点B直角三角形只有一条高C三角形的中线可能在三角形的外部D三角形的高线都在三角形的内部二、多选题(5小题,每小题4分,共计20分)1、若将一副三角板按如图所示的方式放置,则下列结论正确的是()A12B如果230,则有ACDEC如果230,则有BCA

    3、DD如果230,必有4C 线 封 密 内 号学级年名姓 线 封 密 外 2、已知等腰三角形的周长是12,且各边长都为整数,则各边的长可能是()A2,2,8B5,5,2C4,4,4D3,3,53、关于多边形,下列说法中正确的是()A过七边形一个顶点可以作4条对角线B边数越多,多边形的外角和越大C六边形的内角和等于720D多边形的内角中最多有3个锐角4、如图,EADF,AE=DF,要使AECDFB,可以添加的条件有()AAB=CDBAC=BDCA=DDE=F5、用下列一种正多边形可以拼地板的是()A正三角形B正六边形C正八边形D正十二边形第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计

    4、25分)1、如图,伸缩晾衣架利用的几何原理是四边形的_2、如图,在和中,则_3、如图,在四边形中,于,则的长为_4、如图,在和中,以点为顶点作,两边分别交,于点,连接,则的周长为_5、如果一个多边形的每个外角都是,那么这个多边形内角和的度数为_四、解答题(5小题,每小题8分,共计40分)1、如图所示,点M是线段AB上一点,ED是过点M的一条直线,连接AE、BD,过点B作BFAE交ED于F,且EM=FM(1)若AE=5,求BF的长;(2)若AEC=90,DBF=CAE,求证:CD=FE 线 封 密 内 号学级年名姓 线 封 密 外 2、一个零件形状如图所示,按规定应等于75,和应分别是18和22

    5、,某质检员测得,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由3、如图,ABC中,AD是高,AE、BF是角平分线,它们相交于点O,CAB50,C60,求DAE和BOA的度数4、如图,已知ABC求作:BC边上的高与内角B的角平分线的交点5、在中,D为BC延长线上一点,点E为线段AC,CD的垂直平分线的交点,连接EA,EC,ED(1)如图1,当时,则_;(2)当时,如图2,连接AD,判断的形状,并证明;如图3,直线CF与ED交于点F,满足P为直线CF上一动点当的值最大时,用等式表示PE,PD与AB之间的数量关系为_,并证明-参考答案-一、单选题1、C【解析】【分析】如图(见解析

    6、),设这个凸五边形为,连接,并设,先在和中,根据三角形的三边关系定理可得,从而可得,再在中,根据三角形的三边关系定理可得,从而可得,由此即可得出答案【详解】解:如图,设这个凸五边形为,连接,并设, 线 封 密 内 号学级年名姓 线 封 密 外 在中,即,在中,即,所以,在中,所以,观察四个选项可知,只有选项C符合,故选:C【考点】本题考查了三角形的三边关系定理,通过作辅助线,构造三个三角形是解题关键2、B【解析】【分析】解方程得出x4或x6,分两种情况:当ABAD4时,4+48,不能构成三角形;当ABAD6时,6+68,即可得出菱形ABCD的周长【详解】解:如图所示:四边形ABCD是菱形,AB

    7、BCCDAD,x210x+240,因式分解得:(x4)(x6)0,解得:x4或x6,分两种情况:当ABAD4时,4+48,不能构成三角形;当ABAD6时,6+68,菱形ABCD的周长4AB24故选:B【考点】本题考查菱形的性质、解一元二次方程-因式分解法、三角形的三边关系,熟练掌握并灵活运用是解题的关键3、C【解析】【分析】根据三角形的外角性质求解 【详解】解:由三角形的外角性质可得:ACD=B+A,A=ACD-B=130-55=75,故选C 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查三角形的外角性质,熟练掌握三角形的外角性质定理并能灵活运用是解题关键4、B【解析】【分析】

    8、连接AC并延长交EF于点M由平行线的性质得,再由等量代换得,先求出即可求出【详解】解:连接AC并延长交EF于点M,故选B【考点】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型5、A【解析】【分析】根据三角形中线及高线的定义逐一判断即可得答案【详解】A.三角形的三条中线必交于一点,故该选项正确,B.直角三角形有三条高,故该选项错误,C.三角形的中线不可能在三角形的外部,故该选项错误,D.三角形的高线不一定都在三角形的内部,故该选项错误,故选:A【考点】本题考查三角形的中线及高线,熟练掌握定义是解题关键二、多选题1、BD【解析】【分析】根据两种三角形的各角的度数,利用平行线的判定与

    9、性质结合已知条件对各个结论逐一验证,即可得出答案【详解】解:CABDAE90,13,故A错误230,1360 线 封 密 内 号学级年名姓 线 封 密 外 CAD90+60150, D+CAD180,ACDE,故B正确,230,1360, ,不平行, 故C错误,230,1360, 由三角形的内角和定理可得: 445,故D正确故选:B,D【考点】此题考查平行线的判断,三角形的内角和定理的应用,解题关键在于根据三角形的内角和来进行计算2、BC【解析】【分析】根据三角形三边之间的关系:两边之和大于第三边,两边之差小于第三边结合题目条件“周长为12”,可得出正确答案【详解】A.2+22,5-54,4-

    10、45,3-35;但3+3+512;排除故选:BC【考点】本题主要考查了能够组成三角形三边之间的关系:两边之和大于大三边,两边之差小于第三边;注意结合题目条件“周长为12”3、ACD【解析】【分析】根据多边形的内角和、外角和,多边形的内角线,即可解答【详解】解:A、过七边形一个顶点可以作4条对角线,选项正确,符合题意;B、多边形的外角和是固定不变的,选项错误,不符合题意;C、六边形的内角和等于720,选项正确,符合题意;D、多边形的内角中最多有3个锐角,选项正确,符合题意;故选:ACD【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了多边形,解决本题的关键是熟记多边形的有关性质4

    11、、ABD【解析】【分析】由AEDF可得A=D,要判定AECDFB,已知一边一角,根据三角形全等的判定方法,如果要加边相等,只能是AC=DB(或AB=CD);如果要加角相等,可以是E=F或者是ACE=DBF,结合四个选项即可求解【详解】解:AEDF,A=D,A、AB=CD,AB+BC=CD+BC,即AC=DB,又AE=DF,A=D,根据SAS能推出AECDFB,故本选项符合题意;B、AC=BD,AE=DF,A=D,根据SAS能推出AECDFB,故本选项符合题意;C、A=D,AE=DF,不能推出AECDFB,故本选项不符合题意;D、E=F,AE=DF,A=D,根据ASA能推出AECDFB,故本选项

    12、符合题意;故选:ABD【考点】本题考查了全等三角形的判定定理和平行线的性质,能熟记全等三角形的判定定理的内容是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS5、AB【解析】【分析】分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可求出答案【详解】解:A、 正三边形的一个内角度数为18036,是360的约数,可以拼地板,符合题意; B、正六边形的每个内角是120,能整除360,可以拼地板符合题意; C. 正八边形的一个内角度数为(8-2)1808135,不是360的约数,不可以拼地板,不符合题意;D.正十二边形的一个内角度数为(12-2)18012150,不是36

    13、0的约数,不可以拼地板,不符合题意;故选AB【考点】本题考查了平面镶嵌(拼地板),计算正多边形的内角能否整除360是解答此题的关键三、填空题1、灵活性【解析】【分析】根据四边形的灵活性,可得答案【详解】我们常见的晾衣服的伸缩晾衣架,是利用了四边形的灵活性,故答案为灵活性 线 封 密 内 号学级年名姓 线 封 密 外 【考点】此题考查多边形,解题关键在于掌握四边形的灵活性.2、130【解析】【分析】证明ABCADC即可【详解】,AC=AC,ABCADC,D=B=130,故答案为:130【考点】本题考查了全等三角形的判定和性质,掌握判定定理是解题关键3、【解析】【分析】过点B作 交DC的延长线交于

    14、点F,证明 推出,可得,由此即可解决问题;【详解】解:过点B作交DC的延长线交于点F,如右图所示, , , ,即,故答案为【考点】本题考查全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型4、4【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】延长AC至E,使CE=BM,连接DE证明BDMCDE(SAS),得出MD=ED,MDB=EDC,证明MDNEDN(SAS),得出MN=EN=CN+CE,进而得出答案【详解】延长AC至E,使CE=BM,连接DEBD=CD,且BDC=140,DBC=DCB=20,A=40,AB=AC=2,ABC=A

    15、CB=70,MBD=ABC+DBC=90,同理可得NCD=90,ECD=NCD=MBD=90,在BDM和CDE中, BDMCDE(SAS),MD=ED,MDB=EDC,MDE=BDC=140,MDN=70,EDN=70=MDN,在MDN和EDN中,MDNEDN(SAS),MN=EN=CN+CE,AMN的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;故答案为:4【考点】本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;构造辅助线证明三角形全等是解题的关键5、【解析】【分析】根据正多边形的性质,边数等于360除以每一个外角的度数,然后利用多边形的内

    16、角和公式计算内角和即可【详解】解:一个多边形的每个外角都是60,n=36060=6,则内角和为:(6-2)180=720,故答案为:720【考点】本题主要考查了利用外角求正多边形的边数的方法以及多边形的内角和公式,解题的关键是掌握任意 线 封 密 内 号学级年名姓 线 封 密 外 多边形的外角和都等于360度四、解答题1、(1)BF=5;(2)见解析【解析】【分析】(1)证明AEMBFM即可;(2)证明AECBFD,得到EC=FD,利用等式性质,得到CD=FE【详解】(1)BFAE,MFB=MEA,MBF=MAE,EM=FM,AEMBFM,AE=BF,AE=5,BF=5;(2)BFAE,MFB

    17、=MEA,AEC=90,MFB=90,BFD=90,BFD=AEC,DBF=CAE,AE=BF,AECBFD,EC=FD,EF+FC=FC+CD,CD=FE【考点】本题考查了平行线的性质,三角形全等的判定和性质,等式的性质,熟练掌握平行线性质,灵活进行三角形全等的判定是解题的关键2、不合格,理由见解析【解析】【分析】延长BD与AC相交于点E利用三角形的外角性质,可得,即可求解【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:如图,延长BD与AC相交于点E是的一个外角,同理可得李师傅量得,不是115,这个零件不合格【考点】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它

    18、不相邻的两个内角的和是解题的关键3、DAE5,BOA120【解析】【分析】由CAB50,C60可求出ABC;由AE、BF是角平分线,得到CBFABF35,EAFEAB25;由AD是高,得到DAC;从而计算得到DAE和BOA【详解】CAB50,C60ABC180506070AE、BF是角平分线CBFABF35,EAFEAB25又AD是高ADC90DAC18090C30DAEDACEAF5又ABF35,EAB25BOA180-EAB-ABF180-25-35120DAE5,BOA120【考点】本题考查了三角形角平分线、直角三角形的知识;求解的关键是熟练掌握三角形以及直角三角形的性质,从而完成求解4

    19、、详见解析.【解析】【分析】过点A作BC的垂线,作出B的平分线,二者交点即为所求的点.【详解】如图:P点即为所求 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查了尺规作图,熟练掌握垂线和角平分线的作图步骤是解答本题的关键.5、(1)80;(2)是等边三角形;(3)【解析】【分析】(1)根据垂直平分线性质可知,再结合等腰三角形性质可得,利用平角定义和四边形内角和定理可得,由此求解即可;(2)根据(1)的结论求出即可证明是等边三角形;(3)根据利用对称和三角形两边之差小于第三边,找到当的值最大时的P点位置,再证明对称点与AD两点构成三角形为等边三角形,利用旋转全等模型即可证明,从而

    20、可知,再根据30直角三角形性质可知即可得出结论【详解】解:(1)点E为线段AC,CD的垂直平 分线的交点,在中,故答案为:(2)结论:是等边三角形证明:在中,由(1)得:,是等边三角形结论:证明:如解图1,取D点关于直线AF的对称点,连接、;,等号仅P、E、三点在一条直线上成立,如解图2,P、E、三点在一条直线上, 线 封 密 内 号学级年名姓 线 封 密 外 由(1)得:,又,又,点D、点是关于直线AF的对称点,是等边三角形,是等边三角形,在和中, ,(SAS),在中,【考点】本题是三角形综合题,主要考查了等腰三角形、等边三角形的性质和判定,全等三角形性质和判定等知识点,解题关键是利用对称将转化为三角形三边关系找到P的位置,并证明对称点与AD两点构成三角形为等边三角形

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年强化训练人教版数学八年级上册期中考试题 A卷(含详解).docx
    链接地址:https://www.ketangku.com/wenku/file-702510.html
    关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1