分享
分享赚钱 收藏 举报 版权申诉 / 29

类型2022年最新人教版九年级数学上册期中专项攻克试题 B卷(含答案解析).docx

  • 上传人:a****
  • 文档编号:706653
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:29
  • 大小:594.70KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年最新人教版九年级数学上册期中专项攻克试题 B卷含答案解析 2022 新人 九年级 数学 上册 期中 专项 攻克 试题 答案 解析
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中专项攻克试题 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、直线不经过第二象限,则关于的方程实数解的个数是().A0个B1个C2

    2、个D1个或2个2、记某商品销售单价为x元,商家销售此种商品每月获得的销售利润为y元,且y是关于x的二次函数已知当商家将此种商品销售单价分别定为55元或75元时,他每月均可获得销售利润1800元;当商家将此种商品销售单价定为80元时,他每月可获得销售利润1550元,则y与x的函数关系式是()Ay(x60)2+1825By2(x60)2+1850Cy(x65)2+1900Dy2(x65)2+20003、若点P(2,)与点Q(,)关于原点对称,则mn的值分别为()ABC1D54、若关于x的一元二次方程x2ax0的一个解是1,则a的值为()A1B2C1D25、已知二次函数yax2+bx+c与自变量x的

    3、部分对应值如表,下列说法错误的是()x1013y3131Aa0B方程ax2+bx+c2的正根在4与5之间C2a+b0D若点(5,y1)、(,y2)都在函数图象上,则y1y2二、多选题(5小题,每小题4分,共计20分)1、如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的解析式可能是()Ay=x21By=x2+6x+5Cy=x2+4x+4Dy=x2+8x+172、下列方程中含有一次项的是()ABCD3、如图,抛物线过点,对称轴是直线下列结论正确的是()A 线 封 密 内 号学级年名姓 线

    4、 封 密 外 BC若关于x的方程有实数根,则D若和是抛物线上的两点,则当时,4、在下列选项中,是方程的根的是()A6BC2D5、下列方程中,有实数根的方程是()A(x1)22B(x+1)(2x3)0C3x22x10Dx2+2x+40第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、已知二次函数与x轴有两个交点,把当k取最小整数时的二次函数的图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象,若新图象与直线有三个不同的公共点,则m的值为_2、二次函数的最大值是_3、如图,菱形ABCD的边长为2,A60,E是边AB的中点,F是边AD上的一个动点,将线

    5、段EF绕着点E顺时针旋转60得到EG,连接DG、CG,则DG+CG的最小值为 _4、已知抛物线与x轴的一个交点为,则代数式的值为_5、如图,在正方形网格中,格点绕某点顺时针旋转角得到格点,点与点,点与点,点与点是对应点,则_度四、解答题(5小题,每小题8分,共计40分)1、用适当的方法解方程:(1)(1-x)2-2(x-1)-350;(2)x2+4x-202、如图,抛物线交x轴于,两点,交y轴于点,点Q为线段BC上的动点(1)求抛物线的解析式;(2)求的最小值;(3)过点Q作交抛物线的第四象限部分于点P,连接PA,PB,记与的面积分别为,设,求点P坐标,使得S最大,并求此最大值 线 封 密 内

    6、 号学级年名姓 线 封 密 外 3、已知x1,x2是关于x的一元二次方程x2-4mx+4m2-90的两实数根(1)若这个方程有一个根为-1,求m的值;(2)若这个方程的一个根大于-1,另一个根小于-1,求m的取值范围;(3)已知RtABC的一边长为7,x1,x2恰好是此三角形的另外两边的边长,求m的值4、已知关于x的一元二次方程(1)求证:不论m取何值,方程总有两个不相等的实数根;(2)若方程有两个实数根为,且,求m的值5、抛物线过点,点,顶点为(1)求抛物线的表达式及点的坐标;(2)如图1,点在抛物线上,连接并延长交轴于点,连接,若是以为底的等腰三角形,求点的坐标;(3)如图2,在(2)的条

    7、件下,点是线段上(与点,不重合)的动点,连接,作,边交轴于点,设点的横坐标为,求的取值范围-参考答案-一、单选题1、D【解析】【分析】根据直线不经过第二象限,得到,再分两种情况判断方程的解的情况.【详解】直线不经过第二象限,方程,当a=0时,方程为一元一次方程,故有一个解,当a0,方程有两个不相等的实数根,故选:D.【考点】此题考查一次函数的性质:利用函数图象经过的象限判断字母的符号,方程的解的情况,注意易错点 线 封 密 内 号学级年名姓 线 封 密 外 是a的取值范围,再分类讨论.2、D【解析】【分析】设二次函数的解析式为:yax2bxc,根据题意列方程组即可得到结论【详解】解:设二次函数

    8、的解析式为:yax2+bx+c,当x55,y1800,当x75,y1800,当x80时,y1550, ,解得a2,b260,c6450,y与x的函数关系式是y2x2+260x64502(x65)2+2000,故选:D【考点】本题考查了根据实际问题列二次函数关系式,正确的列方程组是解题的关键3、B【解析】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数解答【详解】解:P(2,-n)与点Q(-m,-3)关于原点对称,2=-(-m),-n=-(-3),m=2,n=-3, 故选:B【考点】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律4、C【解析】【分析】把x1代入方

    9、程x2ax0得1+a0,然后解关于a的方程即可【详解】解:把x1代入方程x2ax0得1+a0,解得a1故选C【考点】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解5、B【解析】【分析】利用表中函数值的变换情况可判断抛物线的开口方向,则可对A进行判断;利用抛物线的对称性可得x1和x4的函数值相等,则可对B进行判断;利用x0和x3时函数值相等可得到抛物线的对称轴方程,则可对C进行判断;利用二次函数的性质则可对D进行判断【详解】解:二次函数值先由小变大,再由大变小, 线 封 密 内 号学级年名姓 线 封 密 外 抛物线的开口向下,a0,故A正确;x1时,y3,

    10、x4时,y3,二次函数yax2+bx+c的函数值为2时,1x0或3x4,即方程ax2+bx+c2的负根在1与0之间,正根在3与4之间,故B错误;抛物线过点(0,1)和(3,1),抛物线的对称轴为直线x,1,2a+b0,故C正确;(,y2)关于直线x的对称点为(,y2),5,y1y2,故D正确;故选:B【考点】本题主要考查了一元二次方程根与系数的关系、抛物线与x轴的交点、图象法求一元二次方程的近似根、根的判别式、二次函数图象与系数的关系,准确计算是解题的关键二、多选题1、ACD【解析】【分析】根据图象左移加,右移减,图象上移加,下移减,可得答案【详解】解:A、yx21,先向上平移1个单位得到yx

    11、2,再向上平移1个单位可以得到yx21,故A符合题意;B、yx26x5(x3)24,右移3个单位,再上移5得到yx21,故B不符合题意;C、yx24x4(x2)2,先向右平移2个单位得到y(x22)2x2,再向上平移1个单位得到yx21,故C符合题意;D、yx28x17(x4)21,先向右平移2个单位得到y(x42)21,再向右平移1个单位得到y(x42-2)21x21,故D符合题意故选:ACD【点睛】本题考查了二次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式,注意由目标函数图象到原函数图象方向正好相反2、ABC【解析】【分析】根据一元二次方程的

    12、一般形式是:ax2+bx+c=0(a,b,c是常数且a0)在一般形式中ax2叫二次项,bx叫一次项,c是常数项其中a,b,c分别叫二次项系数,一次项系数,常数项 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:A、化为一元二次方程的一般形式为:3x2-2x-5=0,一次项为-2x;B、化为一元二次方程的一般形式为:9x2-16x=0,一次项为-16x;C、化为一元二次方程的一般形式为:x2-7x=0;一次项为-7x;D、化为一元二次方程的一般形式为:x2-25=0,不含一次项故选:ABC【点睛】本题考查了一元二次方程的一般形式,注意:找项和项的系数时,带着前面的符号3、D【解析】【详

    13、解】解:A.抛物线开口向下,a0,对称轴在y轴左侧,a、b同号,b0,abc0,故此选项不符合题意;B.(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b),抛物线过点,对称轴是直线,抛物线与x轴另一交点为(2,0), 当x=2时,y=ax2+bx+c=4a+c+2b=0,(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b)=0,(4a+c)2=4b2,故此选项不符合题意;C.,b=2a,当x=2时,y=ax2+bx+c=4a+c+2b=0,4a+c+4a=0,c=-8a,关于x的方程有实数根,=b2-4a(c-m)0,(2a)2-4a(-8a-m) 0,a|x2+1|

    14、,点(x1,y1)到对称轴的距离大于点(x2,y2) 到对称轴的距离,y10时有最小值,a0时有最大值,题中函数 ,故其在时有最大值.【详解】解:,有最大值,当时,有最大值8故答案为8【考点】本题考查了二次函数顶点式求最值,熟练掌握二次函数的表达式及最值的确定方法是解题的关键.3、【解析】【分析】取AD的中点N连接EN,EC,GN,作EHCB交CB的延长线于H根据菱形的性质,可得ADB是等边三角形,从而得到AEN是等边三角形,可证得AEFNEG,进而得到点G的运动轨迹是射线NG,继而得到GD+GCGE+GCEC,在RtBEH和RtECH中, 由勾股定理,即可求解【详解】如图,取AD的中点N连接

    15、EN,EC,GN,作EHCB交CB的延长线于H 线 封 密 内 号学级年名姓 线 封 密 外 四边形ABCD是菱形ADAB,A60,ADB是等边三角形,ADBD,AEED,ANNB,AEAN,A60,AEN是等边三角形,AENFEG60,AEFNEG,EAEN,EFEG,AEFNEG(SAS),ENGA60,ANE60,GND180606060,点G的运动轨迹是射线NG,D,E关于射线NG对称,GDGE,GD+GCGE+GCEC,在RtBEH中,H90,BE1,EBH60,BHBE,EH,在RtECH中,EC,GD+GC,GD+GC的最小值为故答案为:【考点】本题主要考查了菱形的性质,等边三角

    16、形的判定和性质,全等三角形的判定和性质,勾股定理等知识,熟练掌握菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,勾股定理等知识是解题的关键4、2019【解析】【分析】先将点(m,0)代入函数解析式,然后求代数式的值即可得出结果【详解】解:将(m,0)代入函数解析式得,m2-m-1=0,m2-m=1, 线 封 密 内 号学级年名姓 线 封 密 外 -3m2+3m+2022=-3(m2-m)+2022=-3+2022=2019故答案为:2019【考点】本题考查了二次函数图象上点的坐标特征及求代数式的值,解题的关键是将点(m,0)代入函数解析式得到有关m的代数式的值5、【解析】【分析】先

    17、连接,作,的垂直平分线交于点,连接,再由题意得到旋转中心,由旋转的性质即可得到答案.【详解】如图,连接,作,的垂直平分线交于点,连接,的垂直平分线交于点,点是旋转中心,旋转角.故答案为.【考点】本题考查旋转,解题的关键是掌握旋转的性质.四、解答题1、 (1)x18,x2-4(2)x1-2,x2-2【解析】【分析】(1)用分解因式的方法解答,分解因式用十字相乘法分解;(2)用配方法解答,配方前先把-2移项,而后配方,等号左右斗殴配上一次项系数一半的平方(1)原方程可变形为(x-1-7)(x-1+5)0,x-80或x+40,x18,x2-4;(2)移项,得x2+4x2,配方,得x2+4x+46,即

    18、(x+2)26,两边开平方,得x+2,x1-2,x2-2【点睛】本题考查了用适当方法解一元二次方程,解决问题的关键是先考虑直接开平方法分解因式法,而后再考虑配方法或公式法 线 封 密 内 号学级年名姓 线 封 密 外 2、(1);(2)5;(3)时,S有最大值【解析】【分析】(1)利用待定系数法即可求解;(2)作点O关于直线BC的对称点D,连接AD,交BC于点Q,此时|QO|+|QA|有最小值为AD,利用勾股定理即可求解;(3)先求得直线BC的表达式为y=x3,直线AC的表达式为y=3x3可设P(m,m22m3)得到直线PQ的表达式可设为y=3x+ m2+m3,由得到二次函数,再利用二次函数的

    19、性质求解即可【详解】(1)由已知:y=a(x3)(x+1),将(0,3)代入上式得:3=a(03)(0+1),a=1,抛物线的解析式为y=2x3;(2)作点O关于直线BC的对称点D,连接DC 、DB,B(3,0),C(0,3),BOC=90,OB=OC=3,O、D关于直线BC对称,四边形OBDC为正方形,D(3,3),连接AD,交BC于点Q,由对称性|QD|=|QO|,此时|QO|+|QA|有最小值为AD,AD=,|QO|+|QA|有最小值为5;(3)由已知点A(1,0), B(3,0),C(0,3),设直线BC的表达式为y=kx3,把B(3,0)代入得:0=3k3,解得:,直线BC的表达式为

    20、y=x3,同理:直线AC的表达式为y=3x3PQAC,直线PQ的表达式可设为y=3x+b,由(1)可设P(m,m22m3)代入直线PQ的表达式可得b= m2+m3,直线PQ的表达式可设为y=3x+ m2+m3, 线 封 密 内 号学级年名姓 线 封 密 外 由,解得,即,由题意:,P,Q都在四象限,P,Q的纵坐标均为负数,即,根据已知条件P的位置可知时,S最大,即时,S有最大值【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数,二次函数的解析式,二次函数的最值等知识,数形结合,熟练掌握相关性质及定理是解题的关键3、 (1)m的值为1或-2(2)-2m1(3)m或

    21、m【解析】【分析】(1)把x=-1代入方程,列出m的一元二次方程,求出m的值;(2)首先用m表示出方程的两根,然后列出m的不等式组,求出m的取值范围;(3)首先用m表示出方程的两根,分直角ABC的斜边长为7或2m+3,根据勾股定理求出m的值.(1)解:x1,x2是一元二次方程x2-4mx+4m2-90的两实数根,这个方程有一个根为-1,将x-1代入方程x2-4mx+4m2-90,得1+4m+4m2-90解得m1或m-2m的值为1或-2(2)解:x2-4mx+4m29,(x-2m)29,即x-2m3x12m+3,x22m-32m+32m-3,解得-2m1m的取值范围是-2m1(3)解:由(2)可

    22、知方程x2-4mx+4m2-90的两根分别为2m+3,2m-3若RtABC的斜边长为7,则有49(2m+3)2+(2m-3)2解得m边长必须是正数, 线 封 密 内 号学级年名姓 线 封 密 外 m若斜边为2m+3,则(2m+3)2(2m-3)2+72解得m综上所述,m或m【点睛】本题主要考查了根的判别式与根与系数的关系的知识,解答本题的关键是熟练掌握根与系数关系以及根的判别式的知识,此题难度一般.4、(1)见详解;(2)【解析】【分析】(1)根据一元二次方程根的判别式可直接进行求解;(2)利用一元二次方程根与系数的关系可直接进行求解【详解】(1)证明:,不论m取何值,方程总有两个不相等的实数

    23、根;(2)解:,方程有两个实数根为,解得:【点睛】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键5、(1),;(2);(3)【解析】【分析】(1)将的坐标代入解析式,待定系数法求解析式即可,根据顶点在对称轴上,求得对称轴,代入解析式即可的顶点的坐标;(2)设,根据是以为底的等腰三角形,根据,求得点的坐标,进而求得解析式,联立二次函数解析式,解方程组即可求得点的坐标;(3)根据题意,可得,设,根据相似三角形的性质,线段成比例,可得,根据配方法可得的最大值,根据点是线段上(与点,不重合)的动点,可得的最小值,即可求得的范围【详解】(1)抛物线过点,点,解得, 线 封 密 内 号学级年名姓 线 封 密 外 ,代入,解得:,顶点,(2)设, ,,是以为底的等腰三角形,即解得设直线的解析式为解得直线的解析式为联立解得:,(3)点的横坐标为,设,则,是以为底的等腰三角形,即整理得当点与点重合时,与点重合,由题意,点是线段上(与点,不重合)的动点, 线 封 密 内 号学级年名姓 线 封 密 外 的取值范围为:【点睛】本题考查了二次函数综合,相似三角形的性质与判定,待定系数法求一次函数解析式,待定系数法求解析式,等腰三角形的性质,二次函数的性质,综合运用以上知识是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年最新人教版九年级数学上册期中专项攻克试题 B卷(含答案解析).docx
    链接地址:https://www.ketangku.com/wenku/file-706653.html
    相关资源 更多
  • 九年级物理全册期中检测卷8新版沪科版.docx九年级物理全册期中检测卷8新版沪科版.docx
  • 九年级物理全册期中检测卷5新版沪科版.docx九年级物理全册期中检测卷5新版沪科版.docx
  • 九年级物理全册期中检测卷4新版沪科版.docx九年级物理全册期中检测卷4新版沪科版.docx
  • 九年级物理全册中考模拟卷九新版北师大版.docx九年级物理全册中考模拟卷九新版北师大版.docx
  • 九年级物理全册《第21章 第3节 广播、电视和移动通信》导学案(无答案)(新版)新人教版.docx九年级物理全册《第21章 第3节 广播、电视和移动通信》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第21章 第2节 电磁波的海洋》导学案(无答案)(新版)新人教版.docx九年级物理全册《第21章 第2节 电磁波的海洋》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第20章 第5节 磁生电》导学案(无答案)(新版)新人教版.docx九年级物理全册《第20章 第5节 磁生电》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第20章 第3节 电磁铁 电磁继电器》导学案(无答案)(新版)新人教版.docx九年级物理全册《第20章 第3节 电磁铁 电磁继电器》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第20章 第1节 磁现象 磁场》导学案(无答案)(新版)新人教版.docx九年级物理全册《第20章 第1节 磁现象 磁场》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第19章 第3节 安全用电》导学案(无答案)(新版)新人教版.docx九年级物理全册《第19章 第3节 安全用电》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第19章 第2节 家庭电路中电流过大的原因》导学案(无答案)(新版)新人教版.docx九年级物理全册《第19章 第2节 家庭电路中电流过大的原因》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第18章 第4节 焦耳定律》导学案(无答案)(新版)新人教版.docx九年级物理全册《第18章 第4节 焦耳定律》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第18章 第3节 测量小灯泡的电功率》导学案(无答案)(新版)新人教版.docx九年级物理全册《第18章 第3节 测量小灯泡的电功率》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第18章 第2节 电功率》导学案(无答案)(新版)新人教版.docx九年级物理全册《第18章 第2节 电功率》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第18章 第1节 电能 电功》导学案(无答案)(新版)新人教版.docx九年级物理全册《第18章 第1节 电能 电功》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第17章 第4节 欧姆定律在串、并联电路中的应用》导学案(无答案)(新版)新人教版.docx九年级物理全册《第17章 第4节 欧姆定律在串、并联电路中的应用》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第17章 第3节 电阻的测量》导学案(无答案)(新版)新人教版.docx九年级物理全册《第17章 第3节 电阻的测量》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第17章 第2节 欧姆定律》导学案(无答案)(新版)新人教版.docx九年级物理全册《第17章 第2节 欧姆定律》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第17章 第1节 电流与电压和电阻的关系》导学案(无答案)(新版)新人教版.docx九年级物理全册《第17章 第1节 电流与电压和电阻的关系》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第16章 第2节 串、并联电路中电压的规律》导学案(无答案)(新版)新人教版.docx九年级物理全册《第16章 第2节 串、并联电路中电压的规律》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第16章 第1节 电压》导学案(无答案)(新版)新人教版.docx九年级物理全册《第16章 第1节 电压》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第15章 第5节 串、并联电路中电流的规律》导学案(无答案)(新版)新人教版.docx九年级物理全册《第15章 第5节 串、并联电路中电流的规律》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第15章 第4节 电流的测量》导学案(无答案)(新版)新人教版.docx九年级物理全册《第15章 第4节 电流的测量》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第15章 第3节 串联和并联》导学案(无答案)(新版)新人教版.docx九年级物理全册《第15章 第3节 串联和并联》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第15章 第2节 电流和电路》导学案(无答案)(新版)新人教版.docx九年级物理全册《第15章 第2节 电流和电路》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第14章 第3节 能量的转化和守恒》导学案(无答案)(新版)新人教版.docx九年级物理全册《第14章 第3节 能量的转化和守恒》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第14章 第1节 热机》导学案(无答案)(新版)新人教版.docx九年级物理全册《第14章 第1节 热机》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第13章 第3节 比热容》导学案(无答案)(新版)新人教版.docx九年级物理全册《第13章 第3节 比热容》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第13章 第2节 内能》导学案(无答案)(新版)新人教版.docx九年级物理全册《第13章 第2节 内能》导学案(无答案)(新版)新人教版.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1