分享
分享赚钱 收藏 举报 版权申诉 / 25

类型2022年综合复习人教版九年级数学上册期中定向训练试题 B卷(详解版).docx

  • 上传人:a****
  • 文档编号:709279
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:25
  • 大小:532.32KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年综合复习人教版九年级数学上册期中定向训练试题 B卷详解版 2022 综合 复习 人教版 九年级 数学 上册 期中 定向 训练 试题 详解
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中定向训练试题 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同当水面刚好

    2、淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A4米B5米C2米D7米2、二次函数y=ax2+bx+c的图象如图所示,则该二次函数的顶点坐标为()A(1,3)B(0,1)C(0,3)D(2,1)3、把四张扑克牌所摆放的顺序与位置如下,小杨同学选取其中一张扑克牌把他颠倒后在放回原来的位置,那么扑克牌的摆放顺序与位置都没变化,那么小杨同学所选的扑克牌是()ABCD4、已知关于x的方程有一个根为1,则方程的另一个根为()A-1B1C2D-25、若函数y(a1)x2+2x+a21是二

    3、次函数,则()Aa1Ba1Ca1Da1二、多选题(5小题,每小题4分,共计20分)1、对于二次函数y=2(x1)(x+3),下列说法不正确的是()A图象的开口向上B图象与y轴交点坐标是(0,6)C当x1时,y随x的增大而增大D图象的对称轴是直线x=12、在二次函数y=ax2+bx+c,x与y的部分对应值如下表:则下列说法中正确的是()x2023y8003A图象经过原点;B图象开口向下;C图象经过点(1,3); 线 封 密 内 号学级年名姓 线 封 密 外 D当x0时,y随x的增大而增大;E方程ax2+bx+c=0有两个不相等的实数根3、关于抛物线y=(x2)2+1,下列说法不正确的是( )A开

    4、口向上,顶点坐标(2,1)B开口向下,对称轴是直线x=2C开口向下,顶点坐标(2,1)D当x2时,函数值y随x值的增大而增大4、如图,二次函数yax2+bx+c的图象经过点A(4,0),其对称轴为直线x1,下列结论正确的是()Aa+b+c0Babc0C2a+b0D若P(6,y1),Q(m,y2)是抛物线上两点,且y1y2,则6m45、对于二次函数y=+2x下列结论中正确的个数为( )A它的对称轴是直线x=1B设=+2,=+2,则当时,有C它的图象与x轴的两个交点是(0,0)和(2,0)D当0x2时,y0第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、已知二次函数,当x_

    5、时,y取得最小值2、如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为10米),围成中间隔有一道篱笆的长方形花圃设花圃的宽AB为x米,面积为S平方米则S与x的函数关系式是_,自变量x的取值范围是_3、关于的方程,k=_时,方程有实数根4、把抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为_5、小亮同学在探究一元二次方程的近似解时,填好了下面的表格:根据以上信息请你确定方程的一个解的范围是_四、解答题(5小题,每小题8分,共计40分)1、已知关于x的一元二次方程有两个实数根(1)求k的取值范围;(2)若,求k的值 线 封 密 内 号学级年名姓 线 封 密 外 2、

    6、某种病毒传播非常快,如果1人被感染,经过2轮感染后就会有81人被感染(1)每轮感染中平均1人会感染几人?(2)若病毒得不到有效控制,3轮感染后,被感染的人会不会超过700人?3、今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有两个景点,售票处出示的三种购票方式如表所示:购票方式甲乙丙可游玩景点和门票价格100元/人80元/人160元/人据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,

    7、将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票若丙种门票价格下降10元,求景区六月份的门票总收入;问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?4、如图所示,抛物线与x轴相交于A、B两点,与y轴相交于点C,点M为抛物线的顶点(1)求点C及顶点M的坐标;(2)在抛物线的对称轴上找一点P,使得PA+PC的值最小,请求出点P的坐标并求出最小值;(3)若点N是第四象限内抛物线上的一个动点,连接BN、CN,求面积的最大值及此时点N的坐标5、渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定

    8、为48元/千克时,每天可销售500千克为增大市场占有率,在保证盈利的情况下,工厂采取降价措施批发价每千克降低1元,每天销量可增加50千克(1)写出工厂每天的利润元与降价元之间的函数关系当降价2元时,工厂每天的利润为多少元?(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?-参考答案-一、单选题1、B【解析】【分析】根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=10代入可求解【详解】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,B

    9、C=10,DO=, 线 封 密 内 号学级年名姓 线 封 密 外 设大孔所在抛物线解析式为y=ax2+,BC=10,点B(5,0),0=a(5)2+,a=-,大孔所在抛物线解析式为y=-x2+,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(xb)2,EF=14,点E的横坐标为-7,点E坐标为(-7,-),-=m(xb)2,x1=+b,x2=-+b,MN=4,|+b-(-+b)|=4m=-,顶点为A的小孔所在抛物线的解析式为y=-(xb)2,大孔水面宽度为20米,当x=-10时,y=-,-=-(xb)2,x1=+b,x2=-+b,单个小孔的水面宽度=|(+b)-(-+b)|=5

    10、(米),故选:B【考点】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答2、D【解析】【分析】根据抛物线与轴的两个交点坐标确定对称轴后即可确定顶点坐标【详解】解:观察图象发现图象与轴交于点和,对称轴为,顶点坐标为,故选:D 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查了二次函数的性质及二次函数的图象的知识,解题的关键是根据交点坐标确定对称轴,难度不大3、D【解析】【分析】根据题意,图形是中心对称图形即可得出答案【详解】由题意可知,图形是中心对称图形,可得答案为D,故选:D【考点】本题考查了图形的中心对称的性质,掌握中心图形的性质是解题的

    11、关键4、C【解析】【分析】根据根与系数的关系列出关于另一根t的方程,解方程即可【详解】解:设关于x的方程的另一个根为xt,1t3,解得,t2故选:C【考点】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2bxc0(a0)的两根时,x1x2,x1x25、A【解析】【分析】利用二次函数定义进行解答即可【详解】解:由题意得:a10,解得:a1,故选:A【考点】本题主要考查了二次函数的定义,准确计算是解题的关键二、多选题1、ACD【解析】【分析】将函数解析式变成顶点式,依照二次函数的性质对比四个选项即可得出结论【详解】解:A、y=-2(x-1)(x+3),a=-20,图象的开口向下,故本选项

    12、错误,符合题意;B、y=-2(x-1)(x+3) 线 封 密 内 号学级年名姓 线 封 密 外 =-2x2-4x+6,当x=0时,y=6,即图象与y轴的交点坐标是(0,6),故本选项正确,不符合题意;C、y=-2(x-1)(x+3)=-2(x+1)2+8,即当x-1,y随x的增大而减少,故本选项错误,符合题意;D、y=-2(x-1)(x+3)=-2(x+1)2+8,即图象的对称轴是直线x=-1,故本选项错误,符合题意故选:ACD【点睛】本题考查了二次函数的性质,解题的关键是将二次函数关系式变为顶点式,联系二次函数性质对比四个选项即可2、ACE【解析】【分析】根据二次函数图象的性质,结合表中数据

    13、,逐一分析判断即可【详解】解:A、由表中数据可知,二次函数图象过,选项正确;B、函数图象过,则知对称轴为,当时,由表中数据知,y随x的增大而减小;当时,y随x的增大而增大,所以开口向上,选项错误;C、因为函数的对称轴为,所以由函数对称性知,关于对称,选项正确;D、当时,y随x的增大而增大,选项错误;E、当y=0时,方程ax2+bx+c=0有两个不相等的实数根,选项正确故选:ACE【点睛】本题考查二次函数的图象性质,根据相关知识点解题是关键3、ABC【解析】【分析】由抛物线的解析式可求得其对称轴、开口方向、顶点坐标,进一步可得出其增减性,可得出答案【详解】解:y(x2)21,抛物线开口向上,对称

    14、轴为直线x2,顶点坐标为(2,1),A、B、C不正确;当x2时,y随x的增大而增大,D正确,故选:ABC【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y中,对称轴为直线xh,顶点坐标为(h,k)4、ABD【解析】【分析】根据题意可得点A(4,0)关于对称轴的对称点 ,从而得到当 时, ,再由 线 封 密 内 号学级年名姓 线 封 密 外 ,可得在对称轴右侧 随 的增大而增大,从而得到当 时, ;根据图象可得 , ,可得 ;再由 ,可得;然后根据P(6,y1)关于对称轴的对称点 ,可得当y1y2时,6m4,即可求解【详解】解:二次函数yax2+bx+c的图象经过点A(

    15、4,0),其对称轴为直线x1,点A(4,0)关于对称轴的对称点 ,即当 时, ,抛物线开口向上, ,在对称轴右侧 随 的增大而增大,当 时, ,故A正确;抛物线与 交于负半轴, ,对称轴为直线x1, , ,即 , ,故B正确; ,故C错误;P(6,y1)关于对称轴的对称点 ,当y1y2时,6m4,故D正确故选:ABD【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质,并利用数形结合思想解答是解题的关键5、ACD【解析】【分析】利用公式法计算对称轴,利用解方程法确定交点坐标,根据函数图像及其开口判断y的属性,函数的增减性即可【详解】二次函数y=+2x,x=1,故A正确;=+

    16、2,=+2,(,),(,)都是二次函数y=+2x图像上的点,对称轴为x=1,a=-10,当1时,;当1时,;故B不正确;二次函数y=+2x,令y=0,得+2x=0,解得 它的图象与x轴的两个交点是(0,0)和(2,0),故C正确; 线 封 密 内 号学级年名姓 线 封 密 外 二次函数y=+2x的开口向下,且它的图象与x轴的两个交点是(0,0)和(2,0),当0x2时,y0,故D正确;故选ACD【点睛】本题考查了二次函数的对称性,增减性,与x轴的交点坐标,熟练掌握抛物线的性质是解题的关键三、填空题1、1【解析】【分析】根据抛物线的顶点坐标和开口方向即可得出答案【详解】解:,该抛物线的顶点坐标为

    17、,且开口方向向上,当时,取得最小值,故答案为:1【考点】本题考查二次函数的最值,求二次函数最大值或最小值有三种方法:第一种可有图象直接得出,第二种是配方法,第三种是公式法2、 S3x224x x8【解析】【详解】可先用篱笆的长表示出BC的长,然后根据矩形的面积=长宽,得出S与x的函数关系式,并根据墙的最大可用长度为10米,列不等式组即可得出自变量的取值范围解:由题可知,花圃的宽AB为x米,则BC为(243x)米.S=x(243x)=3x2+24x.0243x10,解得x8,故答案为S3x224x,x8.3、【解析】【分析】由于最高次项前面的系数不确定,所以进行分类讨论:当时,直接进行求解;当时

    18、,方程为一元二次方程,利用根的判别式,确定k的取值范围,最后综合即可求出满足题意的k的取值范围【详解】解:当时,方程化为:,解得:,符合题意;当时,方程有实数根,即,解得:, 线 封 密 内 号学级年名姓 线 封 密 外 且;综上所述,当时,方程有实数根,故答案为:【考点】题目主要考查方程的解的情况,包括一元一次方程及一元二次方程的求解,分情况讨论方程的解是解题关键4、【解析】【分析】直接根据“上加下减,左加右减”进行计算即可【详解】解:抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为:,即:故答案为:【考点】本题主要考查函数图像的平移,熟记函数图像的平移方式“上加下

    19、减,左加右减”是解题的关键5、【解析】【分析】观察表格可知,随x的值逐渐增大,ax2+bx+c的值在3.243.25之间由负到正,故可判断ax2+bx+c=0时,对应的x的值在3.24x3.25之间【详解】根据表格可知,ax2+bx+c=0时,对应的x的值在3.24x3.25之间.故答案为3.24x3.25.【考点】本题考查了一元二次方程的知识点,解题的关键是根据表格求出一元二次方程的近似根.四、解答题1、 (1) ;(2) 【解析】【分析】(1)根据建立不等式即可求解;(2)先提取公因式对等式变形为,再结合韦达定理求解即可【详解】解:(1)由题意可知,整理得:,解得:,的取值范围是:故答案为

    20、:(2)由题意得:,由韦达定理可知:,故有:, 线 封 密 内 号学级年名姓 线 封 密 外 整理得:,解得:,又由(1)中可知,的值为故答案为:【点睛】本题考查了一元二次方程判别式、根与系数的关系、韦达定理、一元二次方程的解法等知识点,当0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当0时,方程没有实数根2、 (1)8人(2)会【解析】【分析】(1)设每轮感染中平均一个人会感染x个人,根据一个人被感染经过两轮感染后就会有81个人被感染,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据3轮感染后被感染的人数=2轮感染后被感染的人数(1+8),即可求出3轮感

    21、染后被感染的人数,再将其与700进行比较后即可得出结论(1)设每轮感染中平均1人会感染x人,依题意,得1xx(1x)81,解得x18,x210(不合题意,舍去)答:每轮感染中平均1人会感染8人(2)81(18)729(人),729700答:若病毒得不到有效控制,3轮感染后,被感染的人会超过700人【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键3、(1)20%;(2)798万元,当丙种门票价格降低24元时,景区六月份的门票总收入有最大值,为817.6万元【解析】【分析】(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为,则四月份的游客为人,五月份的

    22、游客为人,再列方程,解方程可得答案;(2)分别计算购买甲,乙,丙种门票的人数,再计算门票收入即可得到答案;设丙种门票价格降低元,景区六月份的门票总收入为万元,再列出与的二次函数关系式,利用二次函数的性质求解最大利润即可得到答案【详解】解:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为,由题意,得 解这个方程,得(舍去)答:四月和五月这两个月中,该景区游客人数平均每月增长20%(2)由题意,丙种门票价格下降10元,得:购买丙种门票的人数增加:(万人),购买甲种门票的人数为:(万人),购买乙种门票的人数为:(万人),所以:门票收入问;(万元) 线 封 密 内 号学级年名姓 线 封 密

    23、 外 答:景区六月份的门票总收入为798万元设丙种门票价格降低元,景区六月份的门票总收入为万元,由题意,得化简,得, ,当时,取最大值,为817.6万元 答:当丙种门票价格降低24元时,景区六月份的门票总收入有最大值,为817.6万元【点睛】本题考查的是一元二次方程的应用,二次函数的实际应用,掌握利用二次函数的性质求解利润的最大值是解题的关键4、(1)点的坐标为,点的坐标为;(2)点P的坐标为(1,4),的最小值为;(3)面积的最大值为,此时点的坐标为【解析】【分析】(1)令抛物线解析式中即可求出点坐标,将抛物线的一般式化为顶点式,即可求出顶点坐标;(2)根据轴对称的性质可得线段BC与对称轴的

    24、交点即为点P,先利用待定系数法求出解析式,由此再求出点P坐标即可;(3)过点作轴的垂线交直线于Q点,设,进而得到点坐标,最后根据求解即可【详解】解:(1)将代入,得:,点的坐标为,抛物线的顶点的坐标为;(2)如图,设线段BC与对称轴的交点为点P,连接AC,AP,根据轴对称的性质可得:,两点之间线段最短,此时最小,将代入,得: ,解得:,点的坐标为,设直线BC的解析式为,将,代入,得:,解得:, 线 封 密 内 号学级年名姓 线 封 密 外 直线BC的解析式为,顶点的坐标为,抛物线的对称轴为直线,将代入,得,点P的坐标为(1,4);故此时的最小值为(3)过点作轴的垂线交直线于点,连接,如图1所示

    25、:设点坐标为,则点坐标为,其中,当时,有最大值为,将代入,得:,BCN面积的最大值为,此时点的坐标为【点睛】本题是二次函数综合题目,考查了二次函数的图象和性质、待定系数法求直线的解析式等知识,本题综合性较强,具有一定的难度,熟练掌握二次函数的图形和性质,学会用代数的方法求解几何问题是解决本题的关键5、(1),9600;(2)降价4元,最大利润为9800元;(3)43【解析】【分析】(1)若降价元,则每天销量可增加千克,根据利润公式求解并整理即可得到解析式,然后代入求出对应函数值即可;(2)将(1)中的解析式整理为顶点式,然后利用二次函数的性质求解即可;(3)令可解出对应的的值,然后根据“让利于民”的原则选择合适的的值即可【详解】(1)若降价元,则每天销量可增加千克, 线 封 密 内 号学级年名姓 线 封 密 外 整理得:,当时,每天的利润为9600元;(2),当时,取得最大值,最大值为9800,降价4元,利润最大,最大利润为9800元;(3)令,得:,解得:,要让利于民,(元)定价为43元【点睛】本题考查二次函数的实际应用,弄清数量关系,准确求出函数解析式并熟练掌握二次函数的性质是解题关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年综合复习人教版九年级数学上册期中定向训练试题 B卷(详解版).docx
    链接地址:https://www.ketangku.com/wenku/file-709279.html
    相关资源 更多
  • 九年级物理全册期中检测卷8新版沪科版.docx九年级物理全册期中检测卷8新版沪科版.docx
  • 九年级物理全册期中检测卷5新版沪科版.docx九年级物理全册期中检测卷5新版沪科版.docx
  • 九年级物理全册期中检测卷4新版沪科版.docx九年级物理全册期中检测卷4新版沪科版.docx
  • 九年级物理全册中考模拟卷九新版北师大版.docx九年级物理全册中考模拟卷九新版北师大版.docx
  • 九年级物理全册《第21章 第3节 广播、电视和移动通信》导学案(无答案)(新版)新人教版.docx九年级物理全册《第21章 第3节 广播、电视和移动通信》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第21章 第2节 电磁波的海洋》导学案(无答案)(新版)新人教版.docx九年级物理全册《第21章 第2节 电磁波的海洋》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第20章 第5节 磁生电》导学案(无答案)(新版)新人教版.docx九年级物理全册《第20章 第5节 磁生电》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第20章 第3节 电磁铁 电磁继电器》导学案(无答案)(新版)新人教版.docx九年级物理全册《第20章 第3节 电磁铁 电磁继电器》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第20章 第1节 磁现象 磁场》导学案(无答案)(新版)新人教版.docx九年级物理全册《第20章 第1节 磁现象 磁场》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第19章 第3节 安全用电》导学案(无答案)(新版)新人教版.docx九年级物理全册《第19章 第3节 安全用电》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第19章 第2节 家庭电路中电流过大的原因》导学案(无答案)(新版)新人教版.docx九年级物理全册《第19章 第2节 家庭电路中电流过大的原因》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第18章 第4节 焦耳定律》导学案(无答案)(新版)新人教版.docx九年级物理全册《第18章 第4节 焦耳定律》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第18章 第3节 测量小灯泡的电功率》导学案(无答案)(新版)新人教版.docx九年级物理全册《第18章 第3节 测量小灯泡的电功率》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第18章 第2节 电功率》导学案(无答案)(新版)新人教版.docx九年级物理全册《第18章 第2节 电功率》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第18章 第1节 电能 电功》导学案(无答案)(新版)新人教版.docx九年级物理全册《第18章 第1节 电能 电功》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第17章 第4节 欧姆定律在串、并联电路中的应用》导学案(无答案)(新版)新人教版.docx九年级物理全册《第17章 第4节 欧姆定律在串、并联电路中的应用》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第17章 第3节 电阻的测量》导学案(无答案)(新版)新人教版.docx九年级物理全册《第17章 第3节 电阻的测量》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第17章 第2节 欧姆定律》导学案(无答案)(新版)新人教版.docx九年级物理全册《第17章 第2节 欧姆定律》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第17章 第1节 电流与电压和电阻的关系》导学案(无答案)(新版)新人教版.docx九年级物理全册《第17章 第1节 电流与电压和电阻的关系》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第16章 第2节 串、并联电路中电压的规律》导学案(无答案)(新版)新人教版.docx九年级物理全册《第16章 第2节 串、并联电路中电压的规律》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第16章 第1节 电压》导学案(无答案)(新版)新人教版.docx九年级物理全册《第16章 第1节 电压》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第15章 第5节 串、并联电路中电流的规律》导学案(无答案)(新版)新人教版.docx九年级物理全册《第15章 第5节 串、并联电路中电流的规律》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第15章 第4节 电流的测量》导学案(无答案)(新版)新人教版.docx九年级物理全册《第15章 第4节 电流的测量》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第15章 第3节 串联和并联》导学案(无答案)(新版)新人教版.docx九年级物理全册《第15章 第3节 串联和并联》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第15章 第2节 电流和电路》导学案(无答案)(新版)新人教版.docx九年级物理全册《第15章 第2节 电流和电路》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第14章 第3节 能量的转化和守恒》导学案(无答案)(新版)新人教版.docx九年级物理全册《第14章 第3节 能量的转化和守恒》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第14章 第1节 热机》导学案(无答案)(新版)新人教版.docx九年级物理全册《第14章 第1节 热机》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第13章 第3节 比热容》导学案(无答案)(新版)新人教版.docx九年级物理全册《第13章 第3节 比热容》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第13章 第2节 内能》导学案(无答案)(新版)新人教版.docx九年级物理全册《第13章 第2节 内能》导学案(无答案)(新版)新人教版.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1