分享
分享赚钱 收藏 举报 版权申诉 / 25

类型2022年解析卷人教版九年级数学上册期中定向练习试题 卷(Ⅰ)(含答案及解析).docx

  • 上传人:a****
  • 文档编号:711768
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:25
  • 大小:416.82KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年解析卷人教版九年级数学上册期中定向练习试题 卷含答案及解析 2022 解析 卷人教版 九年级 数学 上册 期中 定向 练习 试题 答案
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中定向练习试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、已知二次函数yax2bxc,其中a0,若函数图象与x轴的两个交点均

    2、在负半轴,则下列判断错误的是()Aabc0Bb0Cc0Dbc02、若P(x,3)与点Q(4,y)关于原点对称,则xy的值是()A12B12C64D643、下列方程:;是一元二次方程的是()ABCD4、某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排15场比赛,则八年级班级的个数为()A5B6C7D85、在下列图形中,既是轴对称图形,又是中心对称图形的是()A等边三角形B直角三角形C正五边形D矩形二、多选题(5小题,每小题4分,共计20分)1、已知抛物线y(x1)2经过点A(n,y1),B(n2,y2),若y1y2,则n的值可以为()A1B0.5C0D0

    3、.52、用配方法解下列方程,配方错误的是()A化为B化为C化为D化为3、下表中列出的是一个二次函数的自变量与函数的几组对应值:0136下列各选项中,正确的是()A函数图象的开口向下B当时,的值随的增大而增大C函数的图象与轴无交点D这个函数的最小值小于4、对于实数a,b,定义运算“”:,例如:42,因为,所以,若函数,则下列结论正确的是()A方程的解为,;B当时,y随x的增大而增大;C若关于x的方程有三个解,则;D当时,函数的最大值为1 线 封 密 内 号学级年名姓 线 封 密 外 5、二次函数y=ax2+bx+c(a0)的顶点坐标为(-1,n),其部分图象如图所示下列结论正确的是()ABC若,

    4、是抛物线上的两点,则D关于x的方程无实数根第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,ABC90,AC6,以AB为边长向外作等边ABM,连CM,则CM的最大值为 _2、要利用一面很长的围墙和100米长的隔离栏建三个如图所示的矩形羊圈,若计划建成的三个羊圈总面积为400平方米,则羊圈的边长AB为多少米?设AB=x米,根据题意可列出方程的为_3、如图有一抛物线形的拱桥,拱高10米,跨度为40米,则该抛物线的表达式为_.4、将抛物线向上平移()个单位长度,k,平移后的抛物线与双曲线y(x0)交于点P(p,q),M(1,n),则下列结论正确的是_(写出所有正确结论的序

    5、号) 0p1; 1p1; qn; q2kk5、已知二次函数的图象与x轴的两个交点A,B关于直线x=1对称,且AB=6,顶点在函数y=2x的图象上,则这个二次函数的表达式为_四、解答题(5小题,每小题8分,共计40分)1、发现:四个连续的整数的积加上是一个整数的平方验证:(1)的结果是哪个数的平方?(2)设四个连续的整数分别为,试证明他们的积加上是一个整数的平方;延伸:(3)有三个连续的整数,前两个整数的平方和等于第三个数的平方,试求出这三个整数分别是多少2、为帮助人民应对疫情,某药厂下调药品的价格某种药品经过连续两次降价后,由每盒元下调至元,已知每次下降的百分率相同(1)求这种药品每次降价的百

    6、分率是多少? 线 封 密 内 号学级年名姓 线 封 密 外 (2)已知这种药品的成本为元,若按此降价幅度再一次降价,药厂是否亏本?3、某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(t)之间的关系为m500.2x,销售价y(万元/t)与原料的质量x(t)之间的关系如图所示(1)求y与x之间的函数关系式;(2)设销售收入为P(万元),求P与x之间的函数关系式;(3)原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润销售收入总支出)4、解方程(组):(1)(2);(3)x(x7)8(7x

    7、).5、某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本(1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(不需要求自变量取值范围)(2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?(3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?-参考答案-一、单选题1、B【解析】【分析】根据函数图象与x轴的两个交点均在负半轴,可得抛物线

    8、的对称轴与x轴负半轴相交,可以判断a,b,c的符号,进而可得结论【详解】解:因为函数图象与x轴的两个交点均在负半轴,所以抛物线的对称轴与x轴负半轴相交,所以0,c0,因为a0,所以b0,因为c0,所以abc0,bc0,故选:B【考点】本题考查了二次函数图象与系数的关系,解决本题的关键是掌握二次函数图象与系数的关系2、A【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 直接利用关于原点对称点的性质得出x,y的值,进而得出答案【详解】与点关于原点对称,故选A【考点】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号是解题关键3、D【解析】【分析】根据一元二次方程的定义进行判断

    9、【详解】该方程符合一元二次方程的定义;该方程中含有2个未知数,不是一元二次方程;该方程含有分式,它不是一元二次方程;该方程符合一元二次方程的定义;该方程符合一元二次方程的定义综上,一元二次方程故选:D【考点】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是24、B【解析】【分析】设有x个班级参加比赛,根据题目中的比赛规则,可得一共进行了场比赛,即可列出方程,求解即可【详解】解:设有x个班级参加比赛,解得:(舍),则共有6个班级参加比赛,故选:B【考点】本题考查了一元二次方程的应用,解题关键是读懂题意,得

    10、到比赛总数的等量关系5、D【解析】【分析】根据轴对称图形和中心对称图形的概念逐一判断可得【详解】解:A等边三角形是轴对称图形,不是中心对称图形,不符合题意; 线 封 密 内 号学级年名姓 线 封 密 外 B直角三角形既不是轴对称图形,也不是中心对称图形,不符合题意;C正五边形是轴对称图形,不是中心对称图形,不符合题意;D矩形既是轴对称图形,又是中心对称图形,符合题意;故选:D【考点】本题主要考查中心对称图形和轴对称图形,解题的关键是掌握把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个

    11、图形叫做轴对称图形二、多选题1、D【解析】【分析】由抛物线解析式可得开口向上,对称轴为,根据函数的性质,分为三种情况进行讨论,求出的范围,即可求解【详解】解:由抛物线解析式y(x1)2可得开口向上,对称轴为,当时,随的增加而减小,当时,随的增加而增大当时,在对称轴左侧,不符合题意, 当时,在对称轴右侧,符合题意,当时,在对称轴两侧,y2y1,可得到对称轴的距离小于到对称轴的距离,即,解得综上所得:由此可得答案为:D【点睛】此题考查了二次函数在对称轴两侧的增减性,熟练掌握二次函数的有关性质是解题的关键2、BD【解析】【分析】根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数

    12、化为1,(3)等式两边同时加上一次项系数一半的平方即可得到结论【详解】A. 化为,正确,不符合题意;B. 化为,错误,符合题意;C. 化为,正确,不符合题意;D. 化为,错误,符合题意故选:BD【点睛】此题考查了配方法解一元二次方程,属于基础题,熟练掌握配方法的一般步骤是解题关键3、BD【解析】【分析】根据抛物线经过点(0,-4),(3,-4)可得抛物线对称轴为直线,由抛物线经过点(-2,6)可得抛物线开口向上,进而求解 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:抛物线经过点(0,-4),(3,-4), 抛物线对称轴为直线, 抛物线经过点(-2,6), 当x时,y随x增大而减小

    13、, 抛物线开口向上,且跟x轴有交点,故A,C错误,不符合题意; x时,y随x增大而增大,故B正确,符合题意; 由对称性可知,在处取得最小值,且最小值小于-6故D正确,符合题意 故选:BD【点睛】本题考查二次函数的图象与性质,解题关键是掌握二次函数与方程的关系4、ABD【解析】【分析】根据题干定义求出y(2x)(x+1)的解析式,根据2xx+1及2xx+1可得x1时y2x22x,x1时,yx2+1,进而求解【详解】解:根据题意得:当2xx+1,即x1时,y(2x)22x(x+1)2x22x,当2xx+1,即x1时,y(x+1)22x(x+1)x2+1,当x1时,2x22x0,解得x0(舍去)或x

    14、1,当x1时,x2+10,解得x1(舍去)或x1,(2x)(x+1)0的解是x11,x21;故A正确,B、当x1时,y2x22x,抛物线开口向上,对称轴是直线x,x1时,y随x的增大而增大,B选项正确当x1时,y2x22x2(x)2,x1时,y取最小值为y0,当x1时,yx2+10,当x0时,y取最大值为y1,如图,当0m1时,方程(2x)(x+1)m有三个解,选项C错误,选项D正确 线 封 密 内 号学级年名姓 线 封 密 外 故答案为:ABD【点睛】本题考查二次函数的新定义问题,解题关键是掌握二次函数的性质,掌握二次函数与方程的关系5、CD【解析】【分析】根据二次函数的性质及与x轴另一交点

    15、的位置,即可判定A;当x=2时,即可判定B;根据对称性及二次函数的性质,可判定C;根据平移后与x轴有无交点,可判定D【详解】解:由图象可知:该二次函数图象的对称轴为直线,b=2a,由图象可知:该二次函数图象与x轴的左侧交点在-3与-2之间,故与x轴的另一个交点在0与1之间,当x=1时,y0,即a+b+c0,3a+c0,即4a-2b+c0,故B错误;点关于对称轴对称的点的坐标为,即,在对称轴的左侧y随x的增大而增大,故,故C正确;该二次函数的顶点坐标为(1,n),将函数向下平移n+1个单位,函数图象与x轴无交点,方程无实数根,故D正确,故选:CD【点睛】本题考查了二次函数图象与性质,根据二次函数

    16、的图象判定式子是否成立,解题的关键是从图象中找到相关信息三、填空题1、#【解析】【分析】过点M作MDBC,交BC的延长线于点D,设ABx,利用勾股定理表示出BC,利用解直角三角形表示出MD,BD,再利用勾股定理求得CM的长,根据配方法利用非负数的性质即可得到CM的最大值【详解】如图,过点M作MDBC,交BC的延长线于点D, 设ABx,则,ABM是等边三角形,BMABx,ABM60,ABC90,MBD30,MDBC, 线 封 密 内 号学级年名姓 线 封 密 外 ,在RtMDC中,当x218时,CM有最大值,CM的最大值为:故答案为:【考点】本题考查勾股定理以及配方法,掌握配方法求出最值是解题的

    17、关键2、x(100-4x)=400【解析】【分析】由题意,得BC的长为(100-4x)米,根据矩形面积列方程即可.【详解】解:设AB为x米,则BC的长为(100-4x)米由题意,得x(100-4x)=400故答案为:x(100-4x)=400.【考点】本题主要考查了一元二次方程的实际问题,解决问题的关键是通过图形找到对应关系量,根据等量关系式列方程.3、【解析】【分析】由题意抛物线过点(40,0),顶点坐标为(20,10),设抛物线的解析式为,从而求出a的值,然后确定抛物线的解析式【详解】解:依题意得此函数解析式顶点为,设解析式为,又函数图象经过,.故答案为 .【考点】本题主要考查用待定系数法

    18、确定二次函数的解析式,解题时应根据情况设抛物线的解析式从而使解题简单,此题设为顶点式比较简单. 线 封 密 内 号学级年名姓 线 封 密 外 4、#【解析】【分析】先画出函数图像,判断出当时抛物线和反比例函数图象上的点的纵坐标的关系,确定抛物线右支与反比例函数图象的交点个数,再利用抛物线的对称性与反比例函数的图象与性质直接判断即可【详解】解: 抛物线,该抛物线对称轴为,顶点坐标为(1,),将该抛物线向上平移()个单位长度,则顶点坐标为(1,),当时,反比例函数图象上点的坐标为(1,),如图所示,抛物线平移后的顶点纵坐标即为m,反比例函数上横坐标为1的点的纵坐标即为s,m-s=,k,抛物线的右支

    19、与反比例函数图象只有一个交点,且该交点横坐标大于1;平移后的抛物线与双曲线y(x0)交于点P(p,q),M(1,n),点M为抛物线右支与反比例函数图象的交点,点P为抛物线左支与反比例函数图象的交点,由于反比例函数的图像在第一象限内y随x的增大而减小,且抛物线关于直线对称1p1;q2kk正确;故答案为:【考点】本题考查了抛物线与反比例函数的图像与性质,解题关键是弄清楚这两个交点分别位于抛物线的左支和右支上,再利用抛物线的轴对称性和反比例函数图像的增减性进行判断5、y=x2+x【解析】【分析】利用抛物线与x轴的两个交点关于对称轴对称,求出A和B的坐标,再根据顶点坐标在y=2x的图象上,将x=1代入

    20、即可求出顶点坐标,设顶点式即可求出二次函数表达式.【详解】解:二次函数的图象与x轴的两个交点A,B关于直线x=1对称,且AB=6,A(-4,0),B(2,0),顶点横坐标为-1,又顶点在函数y=2x的图象上, 线 封 密 内 号学级年名姓 线 封 密 外 将x=1代入,得y=2,即顶点坐标为(-1,-2)设二次函数解析式为y=a(x+1)2-2,代入A(-4,0),得a=,即y=(x+1)2-2=x2+x【考点】本题考查了二次函数解析式的求法,中等难度,根据对称轴找到顶点坐标和与x轴的交点坐标是解题关键.四、解答题1、 (1)34561的结果是19的平方;(2)见解析;(3)这三个连续的整数分

    21、别是3、4、5或-1、0、1【解析】【分析】(1)按照有理数的乘法计算出结果,即可判断是19的平方;(2)设出四个连续整数,根据题意得到式子,对式子进行转化,利用完全平方公式得到一个整数的平方;(3)设中间的整数是x,则另外两个整数分别为x-1、x+1,根据“前两个整数的平方和等于第三个数的平方”,列出方程求解即可【详解】(1)34561=361=192,即34561的结果是19的平方;(2)设这四个连续整数依次为:n-1,n,n+1,n+2,则(n-1)n(n+1)(n+2)+1,=(n-1)(n+2)n(n+1)+1 =(n2+n-2)(n2+n)+1=(n2+n)2-2(n2+n)+1=

    22、(n2+n-1)2故四个连续整数的积加上1是一个整数的平方;(3)设中间的整数是x,则第一个是x-1,第三个是x+1,根据题意得(x-1)2+x2=(x+1)2解之得x1=4,x2=0,则x-1=3,x+1=5,或x-1=-1,x+1=1,x=0,答:这三个整数分别是3、4、5或-1、0、1【点睛】本题考查了一元二次方程的应用,因式分解的应用;利用完全平方公式得到一个整数的平方是正确解答本题的关键2、(1);(2)不亏本,见解析【解析】【分析】(1)设这种药品每次降价的百分率是,根据该药品的原价及经过两次降价后的价格,即可得出关于的一元二次方程,求解即可得出结论;(2)根据经过连续三次降价后的

    23、价格=经过连续两次降价后的价格(1-20%),即可求出再次降价后的价格,将其与100元进行比较后即可得出结论【详解】(1)解:设每次下降的百分率为, 依题意,得: ,解得:(不合题意,舍去) 线 封 密 内 号学级年名姓 线 封 密 外 答:这种药品每次降价的百分率是20%;(2)128(1-20%)=102.4,102.4100,按此降价幅度再一次降价,药厂不会亏本【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键3、(1);(2);(3)原料的质量为24吨时,所获销售利润最大,最大销售利润是万元【解析】【分析】(1)利用待定系数法求函数关系式;(2)根据销

    24、售收入销售价销售量列出函数关系式;(3)设销售总利润为W,根据销售利润销售收入原料成本加工费列出函数关系式,然后根据二次函数的性质分析其最值【详解】解:(1)设y与x之间的函数关系式为,将(20,15),(30,12.5)代入,可得:,解得:,y与x之间的函数关系式为;(2)设销售收入为P(万元),P与x之间的函数关系式为;(3)设销售总利润为W,整理,可得:,0,当时,W有最大值为,原料的质量为24吨时,所获销售利润最大,最大销售利润是万元【点睛】本题考查了二次函数的实际应用,涉及了数形结合的数学思想,熟练掌握待定系数法求解析式是解决本题的关键4、 (1)(2)x(3)x17,x28【解析】

    25、【分析】(1)根据代入消元法,可得方程组的解;(2)根据等式的性质,化为整式方程,根据解整式方程,可得答案; 线 封 密 内 号学级年名姓 线 封 密 外 (3)先移项,再提公因式,再求解即可(1)由,得y3x4将代入,得x2(3x4)3,解得x1,将x1代入,解得y1.所以原方程组的解为;(2);解:方程两边都乘(x1)(x1),得(x1)23(x1)(x1),解得x.经检验,x是原方程的解(3)x(x7)8(7x).解:原方程可变形为x(x7)8(x7)0,(x7)(x8)0.x70,或x80.x17,x28.【点睛】本题考查了解二元一次方程组、分式方程及一元二次方程,利用等式的性质得出整

    26、式方程是解题关键,要检验分时方程的根5、(1);(2)70元;(3)80元【解析】【分析】(1)明确题意,找到等量关系求出函数关系式即可;(2)根据题意,按照等量关系“销售量(售价成本)”列出方程,求解即可得到该商品此时的销售单价;(3)设每月所获利润为,按照等量关系列出二次函数,并根据二次函数的性质求得最值即可【详解】解:(1)依题意得,与的函数关系式为;(2)依题意得,即,解得:,当该商品每月销售利润为,为使顾客获得更多实惠,销售单价应定为元;(3)设每月总利润为,依题意得 线 封 密 内 号学级年名姓 线 封 密 外 ,此图象开口向下当时, 有最大值为:(元),当销售单价为元时利润最大,最大利润为元,故为了每月所获利润最大,该商品销售单价应定为元【点睛】本题考查了二次函数在实际生活中的应用,根据题意找到等量关系并掌握二次函数求最值的方法是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年解析卷人教版九年级数学上册期中定向练习试题 卷(Ⅰ)(含答案及解析).docx
    链接地址:https://www.ketangku.com/wenku/file-711768.html
    相关资源 更多
  • 人教版数学四年级下学期期末质量监测试题及答案(全优).docx人教版数学四年级下学期期末质量监测试题及答案(全优).docx
  • 人教版数学四年级下学期期末质量监测试题及答案免费.docx人教版数学四年级下学期期末质量监测试题及答案免费.docx
  • 人教版数学四年级下学期期末质量监测试题及答案一套.docx人教版数学四年级下学期期末质量监测试题及答案一套.docx
  • 人教版数学四年级下学期期末质量监测试题及答案【考点梳理】.docx人教版数学四年级下学期期末质量监测试题及答案【考点梳理】.docx
  • 人教版数学四年级下学期期末质量监测试题及答案【易错题】.docx人教版数学四年级下学期期末质量监测试题及答案【易错题】.docx
  • 人教版数学四年级下学期期末质量监测试题及答案【必刷】.docx人教版数学四年级下学期期末质量监测试题及答案【必刷】.docx
  • 人教版数学四年级下学期期末质量监测试题及答案【基础 提升】.docx人教版数学四年级下学期期末质量监测试题及答案【基础 提升】.docx
  • 人教版数学四年级下学期期末质量监测试题及答案【各地真题】.docx人教版数学四年级下学期期末质量监测试题及答案【各地真题】.docx
  • 人教版数学四年级下学期期末质量监测试题及答案【全优】.docx人教版数学四年级下学期期末质量监测试题及答案【全优】.docx
  • 人教版数学四年级下学期期末质量监测试题及完整答案(精品).docx人教版数学四年级下学期期末质量监测试题及完整答案(精品).docx
  • 人教版数学四年级下学期期末质量监测试题及完整答案(易错题).docx人教版数学四年级下学期期末质量监测试题及完整答案(易错题).docx
  • 人教版数学四年级下学期期末质量监测试题及完整答案(夺冠).docx人教版数学四年级下学期期末质量监测试题及完整答案(夺冠).docx
  • 人教版数学四年级下学期期末质量监测试题及完整答案(名师系列).docx人教版数学四年级下学期期末质量监测试题及完整答案(名师系列).docx
  • 人教版数学四年级下学期期末质量监测试题及完整答案(各地真题).docx人教版数学四年级下学期期末质量监测试题及完整答案(各地真题).docx
  • 人教版数学四年级下学期期末质量监测试题及完整答案(全国通用).docx人教版数学四年级下学期期末质量监测试题及完整答案(全国通用).docx
  • 人教版数学四年级下学期期末质量监测试题及完整答案【必刷】.docx人教版数学四年级下学期期末质量监测试题及完整答案【必刷】.docx
  • 人教版数学四年级下学期期末质量监测试题及完整答案【名师系列】.docx人教版数学四年级下学期期末质量监测试题及完整答案【名师系列】.docx
  • 人教版数学四年级下学期期末质量监测试题及完整答案1套.docx人教版数学四年级下学期期末质量监测试题及完整答案1套.docx
  • 人教版数学四年级下学期期末质量监测试题及参考答案(综合题).docx人教版数学四年级下学期期末质量监测试题及参考答案(综合题).docx
  • 人教版数学四年级下学期期末质量监测试题及参考答案(最新).docx人教版数学四年级下学期期末质量监测试题及参考答案(最新).docx
  • 人教版数学四年级下学期期末质量监测试题及参考答案(实用).docx人教版数学四年级下学期期末质量监测试题及参考答案(实用).docx
  • 人教版数学四年级下学期期末质量监测试题及参考答案(典型题).docx人教版数学四年级下学期期末质量监测试题及参考答案(典型题).docx
  • 人教版数学四年级下学期期末质量监测试题及参考答案【考试直接用】.docx人教版数学四年级下学期期末质量监测试题及参考答案【考试直接用】.docx
  • 人教版数学四年级下学期期末质量监测试题及参考答案【突破训练】.docx人教版数学四年级下学期期末质量监测试题及参考答案【突破训练】.docx
  • 人教版数学四年级下学期期末质量监测试题及参考答案【研优卷】.docx人教版数学四年级下学期期末质量监测试题及参考答案【研优卷】.docx
  • 人教版数学四年级下学期期末质量监测试题及参考答案【满分必刷】.docx人教版数学四年级下学期期末质量监测试题及参考答案【满分必刷】.docx
  • 人教版数学四年级下学期期末质量监测试题及参考答案【模拟题】.docx人教版数学四年级下学期期末质量监测试题及参考答案【模拟题】.docx
  • 人教版数学四年级下学期期末质量监测试题及参考答案【实用】.docx人教版数学四年级下学期期末质量监测试题及参考答案【实用】.docx
  • 人教版数学四年级下学期期末质量监测试题及参考答案【完整版】.docx人教版数学四年级下学期期末质量监测试题及参考答案【完整版】.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1