分享
分享赚钱 收藏 举报 版权申诉 / 25

类型2022年解析卷人教版九年级数学上册期中模拟考试题卷(Ⅱ)(含答案及详解).docx

  • 上传人:a****
  • 文档编号:711826
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:25
  • 大小:547.11KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 解析 卷人教版 九年级 数学 上册 期中 模拟 考试题 答案 详解
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中模拟考试题卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、向空中发射一枚炮弹,第秒时的高度为米,且高度与时间的关系为,若此炮弹在

    2、第秒与第秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )A第秒B第秒C第秒D第秒2、下列方程:;是一元二次方程的是()ABCD3、方程y2-a有实数根的条件是()Aa0Ba0Ca0Da为任何实数4、抛物线的对称轴为直线若关于的一元二次方程(为实数)在的范围内有实数根,则的取值范围是()ABCD5、一元二次方程,用配方法解该方程,配方后的方程为( )ABCD二、多选题(5小题,每小题4分,共计20分)1、关于二次函数y=ax2+bx+c的图象有下列命题,其中正确的命题是()A当c=0时,函数的图象经过原点;B当c0,且函数的图象开口向下时,方程ax2+bx+c=0必有两个不相等的实根;C

    3、函数图象最高点的纵坐标是;D当b=0时,函数的图象关于y轴对称2、下列四个图形是国际通用的交通标志,其中不是中心对称图形的是()ABCD3、在图所示的4个图案中不包含图形的旋转的是()ABCD4、在同一平面直角坐标系中,如图所示,正比例函数与一次函数的图象则二次函数的图象可能是() 线 封 密 内 号学级年名姓 线 封 密 外 ABCD5、下列关于x的方程的说法正确的是()A一定有两个实数根B可能只有一个实数根C可能无实数根D当时,方程有两个负实数根第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、在平面直角坐标系中,已知抛物线ymx22mxm2(m0)(1)抛物线的顶点

    4、坐标为_;(2)点M(x1,y1)、N(x2,y2)(x1x23)是拋物线上的两点,若y1y2,x2x12,则y2的取值范围为_(用含 m的式子表示)2、已知二次函数与x轴有两个交点,把当k取最小整数时的二次函数的图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象,若新图象与直线有三个不同的公共点,则m的值为_3、如图,在平面直角坐标系中,等腰直角三角形OAB,A90,点O为坐标原点,点B在x轴上,点A的坐标是(1,1)若将OAB绕点O顺时针方向依次旋转45后得到OA1B1,OA2B2,OA3B3,可得A1(,0),A2(1,1),A3(0,),则A2021的坐标是_

    5、4、如果关于的一元二次方程的一个解是,那么代数式的值是_5、对于任意实数a、b,定义一种运算:,若,则x的值为_四、解答题(5小题,每小题8分,共计40分)1、顶点为D的抛物线yx2+bx+c交x轴于A、B(3,0),交y轴于点C,直线yx+m经过点C,交x轴于E(4,0)(1)求出抛物线的解析式;(2)如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;(3)点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线yx+m于G,交抛物线于H,连接CH,将CGH沿CH翻折,若点G的

    6、对应点F恰好落在y轴上时,请直接写出点P的坐标 线 封 密 内 号学级年名姓 线 封 密 外 2、某种病毒传播非常快,如果1人被感染,经过2轮感染后就会有81人被感染(1)每轮感染中平均1人会感染几人?(2)若病毒得不到有效控制,3轮感染后,被感染的人会不会超过700人?3、如图是两条互相垂直的街道, 且A到B, C的距离都是4千米. 现甲从B地走向A地, 乙从A地走向C地, 若两人同时出发且速度都是4千米/时, 问何时两人之间的距离最近?4、解一元二次方程(1) (2) 5、如图,抛物线交x轴于,两点,交y轴于点,点Q为线段BC上的动点(1)求抛物线的解析式;(2)求的最小值;(3)过点Q作

    7、交抛物线的第四象限部分于点P,连接PA,PB,记与的面积分别为,设,求点P坐标,使得S最大,并求此最大值-参考答案-一、单选题1、C【解析】【分析】根据二次函数图像的对称性,求出对称轴,即可得到答案.【详解】解:根据题意,炮弹在第秒与第秒时的高度相等,抛物线的对称轴为:秒,第12秒距离对称轴最近,上述时间中,第12秒时炮弹高度最高;故选:C.【考点】本题考查了二次函数的性质和对称性,解题的关键是掌握二次函数的对称性进行解题. 线 封 密 内 号学级年名姓 线 封 密 外 2、D【解析】【分析】根据一元二次方程的定义进行判断【详解】该方程符合一元二次方程的定义;该方程中含有2个未知数,不是一元二

    8、次方程;该方程含有分式,它不是一元二次方程;该方程符合一元二次方程的定义;该方程符合一元二次方程的定义综上,一元二次方程故选:D【考点】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是23、A【解析】【分析】根据平方的非负性可以得出a0,再进行整理即可【详解】解:方程y2a有实数根,a0(平方具有非负性),a0;故选:A【考点】此题考查了直接开平方法解一元二次方程,关键是根据已知条件得出a04、A【解析】【分析】根据给出的对称轴求出函数解析式为,将一元二次方程的实数根可以看做与函数的有交点,再由的范围确

    9、定的取值范围即可求解;【详解】的对称轴为直线,一元二次方程的实数根可以看做与函数的有交点,方程在的范围内有实数根,当时,当时,函数在时有最小值2,故选A【考点】本题考查二次函数的图象及性质;能够将方程的实数根问题转化为二次函数与直线的交点问题,借助数形结合解题是关键 线 封 密 内 号学级年名姓 线 封 密 外 5、D【解析】【分析】按照配方法的步骤,移项,配方,配一次项系数一半的平方.【详解】x22xm=0,x22x=m,x22x+1=m+1,(x1)2=m+1故选D【考点】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确使用二、多选题1、ABD【解析】【分析】根据c与0的关系判断

    10、二次函数yax2bxc与y轴交点的情况;根据顶点坐标与抛物线开口方向判断函数的最值;根据函数yax2c的图象与yax2图象相同,判断函数yax2c的图象对称轴【详解】解:A.c是二次函数yax2bxc与y轴的交点,所以当c0时,函数的图象经过原点;B.c0时,二次函数yax2bxc与y轴的交点在y轴的正半轴,又因为函数的图象开口向下,所以方程ax2bxc0必有两个不相等的实根;C.当a0时,函数图象最高点的纵坐标是;当a0时,函数图象最低点的纵坐标是;由于a值不定,故无法判断最高点或最低点;D.当b0时,二次函数yax2bxc变为yax2c,又因为yax2c的图象与yax2图象相同,所以当b0

    11、时,函数的图象关于y轴对称故选:ABD【点睛】二次函数yax2bxc最值,掌握当a0时,函数的最大值是;当a0时,函数的最小值是是解题关键2、BCD【解析】【分析】根据中心对称图形的概念求解【详解】解:A、是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项符合题意;C、不是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项符合题意故选:BCD【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合3、AC 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】根据中心对称与轴对称的概念,即可求解【详解】解:A、是轴对称图形

    12、,故本选项符合题意;B、是中心对称图形,属于图形的旋转,故本选项不符合题意;C、是轴对称图形,故本选项符合题意;D、既是轴对称图形,也是中心对称图形,包含图形的旋转,故本选项不符合题意;故选:AC【点睛】本题主要考查了中心对称与轴对称的概念,熟练掌握轴对称图形的关键是寻找对称轴,图象沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后与原图重合是解题的关键4、BD【解析】【分析】根据正比例函数图象和一次函数图象可得,然后分两种情况讨论:当时,;当时,即可求解【详解】解:根据题题得:当x=-1时,正比例函数与一次函数的图象相交,即, 当时,对于二次函数,当x=-1时,即,且,故B

    13、选项正确;当时,对于二次函数,当x=1时,即,且,故D选项正确;故选:BD【点睛】本题主要考查了一次函数的图象和性质,二次函数的图象和性质,熟练掌握一次函数的图象和性质,二次函数的图象和性质,利用分类讨论思想解答是解题的关键5、BD【解析】【分析】直接利用方程根与系数的关系以及根的判别式分析求出即可【详解】解:当a=0时,方程整理为解得, 选项B正确;故选项A错误;当时,方程是一元二次方程, 线 封 密 内 号学级年名姓 线 封 密 外 此时的方程表两个不相等的实数根,故选项C错误;若时, ,当时,方程有两个负实数根选项D正确,故选:BD【点睛】此题主要考查了一元二次方程根的判别式和根与系数的

    14、关系,正确把握相关知识是解题关键三、填空题1、 (1,-2) 【解析】【分析】(1)将二次函数解析式化为顶点式求解;(2)抛物线的对称轴为直线x=1,得到当点M,N关于抛物线的对称轴对称时,x1+x2=2,结合x2-x1=2,可得x1=0,x2 =2,得到当2x23时,y1y2,再将x=2、x=3代入函数关系式进行求解即可 【详解】(1),抛物线顶点坐标为(1,-2),故答案为 (1,-2)(2)抛物线的对称轴为直线x=1,当点M,N关于抛物线的对称轴对称时,x1+x2=2,结合x2-x1=2,可得x1=0,x2 =2,当2x23时,y1y2,对于y=m(x-1)2-2,当x =2时,y=m-

    15、2;当x=3时,y=4m-2,【考点】本题考查二次函数图象上的点的特征,解题关键是掌握二次函数与方程及不等式的关系2、1或【解析】【分析】先运用根的判别式求得k的取值范围,进而确定k的值,得到抛物线的解析式,再根据折叠得到新图像的解析式,可求出函数图象与x轴的交点坐标,画出函数图象,可发现,若直线与新函数有3个交点,可以有两种情况:过交点(-1,0),根据待定系数法可得m的值;不过点(一1,0),与相切时,根据判别式解答即可【详解】解:函数与x轴有两个交点,解得, 线 封 密 内 号学级年名姓 线 封 密 外 当k取最小整数时,抛物线为,将该二次函数图象在x轴下方的部分沿x轴翻折到x轴上方,图

    16、象的其余部分不变,得到一个新图象,所以新图象的解析式为(或):因为为的,所以它的图象从左到右是上升的,当它与新图象有3个交点时它一定过,把代入得所以,与相切时,图象有三个交点,解得故答案为:1或【考点】本题主要考查了二次函数图象与几何变换、待定系数法求函数解析式等知识点,掌握分类讨论和直线与抛物线相切时判别式等于零是解答本题的关键3、【解析】【分析】根据题意得:A1(,0),A2(1,1),A3(0,), ,由此发现,旋转8次一个循环,再由 ,即可求解【详解】解:根据题意得:A1(,0),A2(1,1),A3(0,), ,由此发现,旋转8次一个循环, ,A2021的坐标是 故答案为:【考点】本

    17、题主要考查了图形的旋转,明确题意,准确得到规律是解题的关键4、【解析】【分析】根据关于的一元二次方程的一个解是,可以得到的值,然后将所求式子变形,再将的值代入,即可解答本题【详解】解:关于的一元二次方程的一个解是, 线 封 密 内 号学级年名姓 线 封 密 外 故答案为:2020【考点】本题考查一元二次方程的解,解答本题的关键是明确一元二次方程的解的含义5、或2【解析】【分析】根据新定义的运算得到,整理并求解一元二次方程即可【详解】解:根据新定义内容可得:,整理可得,解得,四、解答题1、 (1)yx2+2x+3;(2)S(x)2+;当x时,S有最大值,最大值为;(3)存在,点P的坐标为(4,0

    18、)或(,0).【解析】【分析】(1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式(2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CGHG,列等式求解即可【详解】(1)将点E代入直线解析式中,04+m,解得m3,解析式为yx+3,C(0,3),B(3,0),则有,解得,抛物线的解析式为:yx2+2x+3;(2)yx2+2x+3(x1)2+4,D(1,4),设直线BD的解析式为ykx+

    19、b,代入点B、D,解得,直线BD的解析式为y2x+6, 线 封 密 内 号学级年名姓 线 封 密 外 则点M的坐标为(x,2x+6),S(3+62x)x(x)2+,当x时,S有最大值,最大值为(3)存在,如图所示,设点P的坐标为(t,0),则点G(t,t+3),H(t,t2+2t+3),HG|t2+2t+3(t+3)|t2t|CGt,CGH沿GH翻折,G的对应点为点F,F落在y轴上,而HGy轴,HGCF,HGHF,CGCF,GHCCHF,FCHCHG,FCHFHC,GCHGHC,CGHG,|t2t|t,当t2tt时,解得t10(舍),t24,此时点P(4,0)当t2tt时,解得t10(舍),t

    20、2,此时点P(,0)综上,点P的坐标为(4,0)或(,0)【点睛】此题考查了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CGHG为解题关键2、 (1)8人(2)会【解析】【分析】(1)设每轮感染中平均一个人会感染x个人,根据一个人被感染经过两轮感染后就会有81个人被感染,即可得出关于x的一元二次方程,解之取其正值即可得出结论; 线 封 密 内 号学级年名姓 线 封 密 外 (2)根据3轮感染后被感染的人数=2轮感染后被感染的人数(1+8),即可求出3轮感染后被感染的人数,再将其与700进行比较后即可得出结论(1)设每轮感染中平均1人会感染x人,依题意

    21、,得1xx(1x)81,解得x18,x210(不合题意,舍去)答:每轮感染中平均1人会感染8人(2)81(18)729(人),729700答:若病毒得不到有效控制,3轮感染后,被感染的人会超过700人【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键3、当t=(在0t1的范围内)时, S的最小值为千米【解析】【分析】设两人均出发了t时,根据勾股定理建立甲、乙之间的距离与时间t的函数关系式,然后求出二次函数在一定的取值范围内的最值即可得解.【详解】设两人均出发了t时, 则此时甲到A地的距离是(44t)千米, 乙离A地的距离是4t千米, 由勾股定理, 得甲, 乙两

    22、人间的距离为:S=,当t=(在0t1的范围内)时, S的最小值为千米.【点睛】本题考查二次函数的实际应用,关键在于根据题意写出二次函数关系式,再利用求二次函数的最值方法求最值.4、(1)x1=2,x2=-2;(2)x1=4,x2=-2【解析】【分析】(1)先把方程变形为x2=4,然后利用直接开平方法解方程;(2)先把方程化为一般式,然后利用因式分解法解方程【详解】解:(1)x2=4,x=2,x1=2,x2=-2;(2)方程整理为x2-2x-8=0(x-4)(x+2)=0,x-4=0或x+2=0,x1=4,x2=-2【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程

    23、的解的方法,这种方法简便易用,是解一元二次方程最常用的方法也考查了直接开平方法解方程5、(1);(2)5;(3)时,S有最大值【解析】【分析】(1)利用待定系数法即可求解;(2)作点O关于直线BC的对称点D,连接AD,交BC于点Q,此时|QO|+|QA|有最小值为AD,利用勾 线 封 密 内 号学级年名姓 线 封 密 外 股定理即可求解;(3)先求得直线BC的表达式为y=x3,直线AC的表达式为y=3x3可设P(m,m22m3)得到直线PQ的表达式可设为y=3x+ m2+m3,由得到二次函数,再利用二次函数的性质求解即可【详解】(1)由已知:y=a(x3)(x+1),将(0,3)代入上式得:3

    24、=a(03)(0+1),a=1,抛物线的解析式为y=2x3;(2)作点O关于直线BC的对称点D,连接DC 、DB,B(3,0),C(0,3),BOC=90,OB=OC=3,O、D关于直线BC对称,四边形OBDC为正方形,D(3,3),连接AD,交BC于点Q,由对称性|QD|=|QO|,此时|QO|+|QA|有最小值为AD,AD=,|QO|+|QA|有最小值为5;(3)由已知点A(1,0), B(3,0),C(0,3),设直线BC的表达式为y=kx3,把B(3,0)代入得:0=3k3,解得:,直线BC的表达式为y=x3,同理:直线AC的表达式为y=3x3PQAC,直线PQ的表达式可设为y=3x+b,由(1)可设P(m,m22m3)代入直线PQ的表达式可得b= m2+m3,直线PQ的表达式可设为y=3x+ m2+m3,由,解得,即,由题意:,P,Q都在四象限, 线 封 密 内 号学级年名姓 线 封 密 外 P,Q的纵坐标均为负数,即,根据已知条件P的位置可知时,S最大,即时,S有最大值【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数,二次函数的解析式,二次函数的最值等知识,数形结合,熟练掌握相关性质及定理是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年解析卷人教版九年级数学上册期中模拟考试题卷(Ⅱ)(含答案及详解).docx
    链接地址:https://www.ketangku.com/wenku/file-711826.html
    相关资源 更多
  • 九年级物理全册期中检测卷8新版沪科版.docx九年级物理全册期中检测卷8新版沪科版.docx
  • 九年级物理全册期中检测卷5新版沪科版.docx九年级物理全册期中检测卷5新版沪科版.docx
  • 九年级物理全册期中检测卷4新版沪科版.docx九年级物理全册期中检测卷4新版沪科版.docx
  • 九年级物理全册中考模拟卷九新版北师大版.docx九年级物理全册中考模拟卷九新版北师大版.docx
  • 九年级物理全册《第21章 第3节 广播、电视和移动通信》导学案(无答案)(新版)新人教版.docx九年级物理全册《第21章 第3节 广播、电视和移动通信》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第21章 第2节 电磁波的海洋》导学案(无答案)(新版)新人教版.docx九年级物理全册《第21章 第2节 电磁波的海洋》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第20章 第5节 磁生电》导学案(无答案)(新版)新人教版.docx九年级物理全册《第20章 第5节 磁生电》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第20章 第3节 电磁铁 电磁继电器》导学案(无答案)(新版)新人教版.docx九年级物理全册《第20章 第3节 电磁铁 电磁继电器》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第20章 第1节 磁现象 磁场》导学案(无答案)(新版)新人教版.docx九年级物理全册《第20章 第1节 磁现象 磁场》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第19章 第3节 安全用电》导学案(无答案)(新版)新人教版.docx九年级物理全册《第19章 第3节 安全用电》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第19章 第2节 家庭电路中电流过大的原因》导学案(无答案)(新版)新人教版.docx九年级物理全册《第19章 第2节 家庭电路中电流过大的原因》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第18章 第4节 焦耳定律》导学案(无答案)(新版)新人教版.docx九年级物理全册《第18章 第4节 焦耳定律》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第18章 第3节 测量小灯泡的电功率》导学案(无答案)(新版)新人教版.docx九年级物理全册《第18章 第3节 测量小灯泡的电功率》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第18章 第2节 电功率》导学案(无答案)(新版)新人教版.docx九年级物理全册《第18章 第2节 电功率》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第18章 第1节 电能 电功》导学案(无答案)(新版)新人教版.docx九年级物理全册《第18章 第1节 电能 电功》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第17章 第4节 欧姆定律在串、并联电路中的应用》导学案(无答案)(新版)新人教版.docx九年级物理全册《第17章 第4节 欧姆定律在串、并联电路中的应用》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第17章 第3节 电阻的测量》导学案(无答案)(新版)新人教版.docx九年级物理全册《第17章 第3节 电阻的测量》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第17章 第2节 欧姆定律》导学案(无答案)(新版)新人教版.docx九年级物理全册《第17章 第2节 欧姆定律》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第17章 第1节 电流与电压和电阻的关系》导学案(无答案)(新版)新人教版.docx九年级物理全册《第17章 第1节 电流与电压和电阻的关系》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第16章 第2节 串、并联电路中电压的规律》导学案(无答案)(新版)新人教版.docx九年级物理全册《第16章 第2节 串、并联电路中电压的规律》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第16章 第1节 电压》导学案(无答案)(新版)新人教版.docx九年级物理全册《第16章 第1节 电压》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第15章 第5节 串、并联电路中电流的规律》导学案(无答案)(新版)新人教版.docx九年级物理全册《第15章 第5节 串、并联电路中电流的规律》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第15章 第4节 电流的测量》导学案(无答案)(新版)新人教版.docx九年级物理全册《第15章 第4节 电流的测量》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第15章 第3节 串联和并联》导学案(无答案)(新版)新人教版.docx九年级物理全册《第15章 第3节 串联和并联》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第15章 第2节 电流和电路》导学案(无答案)(新版)新人教版.docx九年级物理全册《第15章 第2节 电流和电路》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第14章 第3节 能量的转化和守恒》导学案(无答案)(新版)新人教版.docx九年级物理全册《第14章 第3节 能量的转化和守恒》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第14章 第1节 热机》导学案(无答案)(新版)新人教版.docx九年级物理全册《第14章 第1节 热机》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第13章 第3节 比热容》导学案(无答案)(新版)新人教版.docx九年级物理全册《第13章 第3节 比热容》导学案(无答案)(新版)新人教版.docx
  • 九年级物理全册《第13章 第2节 内能》导学案(无答案)(新版)新人教版.docx九年级物理全册《第13章 第2节 内能》导学案(无答案)(新版)新人教版.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1