分享
分享赚钱 收藏 举报 版权申诉 / 29

类型2022年解析卷人教版数学八年级上册期中专项测试试题 B卷(含答案详解).docx

  • 上传人:a****
  • 文档编号:712359
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:29
  • 大小:837.11KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年解析卷人教版数学八年级上册期中专项测试试题 B卷含答案详解 2022 解析 卷人教版 数学 年级 上册 期中 专项 测试 试题 答案 详解
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中专项测试试题 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,在ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和

    2、E,B60,C25,则BAD为()A50B70C75D802、如图,RtACB中,ACB=90,ACB的角平分线AD,BE相交于点P,过P作PFAD交BC的延长线于点F,交AC于点H,则下列结论:APB=135; AD=PF+PH;DH平分CDE;S四边形ABDE=SABP;SAPH=SADE,其中正确的结论有()个A2B3C4D53、如图,若,则下列结论中不一定成立的是()ABCD4、如图,在中,平分,则的度数是()ABCD5、平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是()A1B2C7D8二、多选题(5小题,每小题4分,共计20分)1、如图,在中

    3、,点E在的延长线上,的角平分线与的角平分线相交于点D,连接,下列结论中正确的是() 线 封 密 内 号学级年名姓 线 封 密 外 ABCD2、如图,为估计池塘岸边A,B两点间的距离,小方在池塘的一侧选取一点O,测得米,米,A,B间的距离可能是()A12米B10米C15米D8米3、(多选)如图,在中,分别为边,上的点,平分,于点,为的中点,延长交于点,则下列判断中正确的结论有()A线段是的高B与面积相等CD4、如图,在中,是角平分线,是中线,则下列结论,其中不正确的结论是()ABCD5、已知等腰三角形的周长是12,且各边长都为整数,则各边的长可能是()A2,2,8B5,5,2C4,4,4D3,3

    4、,5第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,用一条宽度相等的足够长的纸条打一个结(如图1),然后轻轻拉紧、压平就可以得到如图2所示的正五边形.在图2中,的度数为_ 2、已知三角形的两边长分别为3和6,则这个三角形的第三边长可以是_(写出一个即可),3、如图ab,12=75,则3+4_.4、某学校七年级的八个班进行足球比赛,比赛采用单循环制(即每两个班都进行一场比赛),则一共需要进行_场比赛.5、用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形图中,_度 线 封 密 内 号学级年名姓 线 封 密 外 四、解

    5、答题(5小题,每小题8分,共计40分)1、(2020锦州模拟)问题情境:已知,在等边ABC中,BAC与ACB的角平分线交于点O,点M、N分别在直线AC,AB上,且MON60,猜想CM、MN、AN三者之间的数量关系方法感悟:小芳的思考过程是在CM上取一点,构造全等三角形,从而解决问题;小丽的思考过程是在AB取一点,构造全等三角形,从而解决问题;问题解决:(1)如图1,M、N分别在边AC,AB上时,探索CM、MN、AN三者之间的数量关系,并证明;(2)如图2,M在边AC上,点N在BA的延长线上时,请你在图2中补全图形,标出相应字母,探索CM、MN、AN三者之间的数量关系,并证明2、如图,已知(1)

    6、请用尺规作图在内部找一点,使得点到、的距离相等,(不写作图步骤,保留作图痕迹);(2)若的周长为,面积为,求点到的距离3、如图,点E在边AC上,已知ABDC,AD,BCDE,求证:DEAE+BC4、问题情景:如图1,在同一平面内,点和点分别位于一块直角三角板的两条直角边,上,点与点在直线的同侧,若点在内部,试问,与的大小是否满足某种确定的数量关系?(1)特殊探究:若,则_度,_度,_度;(2)类比探索:请猜想与的关系,并说明理由;(3)类比延伸:改变点的位置,使点在外,其它条件都不变,判断(2)中的结论是否仍然成立?若成立,请说明理由;若不成立,请直接写出,与满足的数量关系式5、如图,在四边形

    7、中,分别是,上的点,连接,(1)如图,求证:; 线 封 密 内 号学级年名姓 线 封 密 外 (2)如图,当周长最小时,求的度数;(3)如图,若四边形为正方形,点、分别在边、上,且,若,请求出线段的长度-参考答案-一、单选题1、B【解析】【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到DAC=C,根据三角形内角和定理求出BAC,计算即可【详解】DE是AC的垂直平分线,DA=DC,DAC=C=25,B=60,C=25,BAC=95,BAD=BAC-DAC=70,故选B【考点】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距

    8、离相等是解题的关键2、B【解析】【分析】正确利用三角形内角和定理以及角平分线的定义即可解决问题正确证明ABPFBP,推出PA=PF,再证明APHFPD,推出PH=PD即可解决问题错误利用反证法,假设成立,推出矛盾即可错误,可以证明S四边形ABDE=2SABP正确由DHPE,利用等高模型解决问题即可【详解】解:在ABC中,AD、BE分别平分BAC、ABCACB=90A+B=90又AD、BE分别平分BAC、ABCBAD+ABE=(A+B)=45APB=135,故正确BPD=45又PFADFPB=90+45=135APB=FPB 线 封 密 内 号学级年名姓 线 封 密 外 又ABP=FBPBP=B

    9、PABPFBP(ASA)BAP=BFP,AB=FB,PA=PF在APH和FPD中APHFPD(ASA)PH=PDAD=AP+PD=PF+PH故正确ABPFBP,APHFPDSAPB=SFPB,SAPH=SFPD,PH=PDHPD=90HDP=DHP=45=BPDHDEPSEPH=SEPDSAPH=SAED,故正确S四边形ABDE=SABP+SAEP+SEPD+SPBD=SABP+(SAEP+SEPH)+SPBD=SABP+SAPH+SPBD=SABP+SFPD+SPBD=SABP+SFBP=2SABP,故不正确若DH平分CDE,则CDH=EDHDHBECDH=CBE=ABECDE=ABCDEA

    10、B,这个显然与条件矛盾,故错误故选B【考点】本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理,三角形的面积等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型3、A【解析】【分析】根据翻三角形全等的性质一一判断即可【详解】解:ABCADE,AD=AB,AE=AC,BC=DE,ABC=ADE,BAD=CAE,AD=AB,ABD=ADB,BAD=180-ABD-ADB,CDE=180-ADB-ADE,ABD=ADE, 线 封 密 内 号学级年名姓 线 封 密 外 BAD=CDE故B、C、D选项不符合题意,故选:A【考点】本题考了三角形全等的性质,解题的关键是三角形

    11、全等的性质4、C【解析】【分析】在中,利用三角形内角和为求,再利用平分,求出的度数,再在利用三角形内角和定理即可求出的度数【详解】在中,平分故选C【考点】本题考查了三角形的内角和和角平分线的性质,熟练应用性质是解决问题的关键5、C【解析】【分析】如图(见解析),设这个凸五边形为,连接,并设,先在和中,根据三角形的三边关系定理可得,从而可得,再在中,根据三角形的三边关系定理可得,从而可得,由此即可得出答案【详解】解:如图,设这个凸五边形为,连接,并设,在中,即,在中,即,所以,在中,所以,观察四个选项可知,只有选项C符合,故选:C【考点】本题考查了三角形的三边关系定理,通过作辅助线,构造三个三角

    12、形是解题关键二、多选题1、ACD【解析】【分析】根据三角形的内角和定理列式计算即可求出BAC=70,再根据角平分线的定义求出DBC,然后利 线 封 密 内 号学级年名姓 线 封 密 外 用三角形的外角性质求出DOC,再根据邻补角可得ACE=120,由角平分线的定义求出ACD=60,再利用三角形的内角和定理列式计算即可BDC,根据BD平分ABC和CD平分ACE,可得AD平分BAC的邻补角,由邻补角和角平分线的定义可得DAC.【详解】解:ABC=50,ACB=60, BAC=180-ABC-ACB=180-50-60=70, 故A选项正确, BD平分ABC, DBC=ABC=50=25, DOC是

    13、OBC的外角, DOC =OBC+ACB=25+60=85, 故B选项不正确; ACB=60, ACE=180-60= 120, CD平分ACE, ACD=ACE=60, BDC=180-85-60=35,故C选项正确;BD平分ABC,点D到直线BA和BC的距离相等,CD平分ACE点D到直线BC和AC的距离相等,点D到直线BA和AC的距离相等,AD平分BAC的邻补角,DAC=(180-70)=55, 故D选项正确 故选ACD【考点】本题主要考查了角平分线的定义,性质和判定,三角形的内角和定理和三角形的外角性质,解决本题的关键是要熟练掌握角平分线的定义,性质和判定.2、ABD【解析】【分析】根据

    14、三角形的三边之间的关系逐一判断即可得到答案.【详解】解:中, 符合题意,不符合题意;故选:【考点】本题考查的是三角形的三边关系的应用,掌握三角形的任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.3、BCD【解析】【分析】根据三角形的高线、中线的性质及全等三角形与三角形内角和定理依次进行判断即可得出结果【详解】解:CEAD, 线 封 密 内 号学级年名姓 线 封 密 外 ACE的高是AF,不是AD,选项A不符合题意;G为AD中点,BG是ABD的中线,ABG与BDG面积相等,选项B符合题意;AD平分BAC,CEAD,EAF=CAF,AFE=AFC=90,在AFE与AFC中,AFEAFC

    15、,AE=AC,AEC=ACE,AB-AE=BE,AB-AC=BE,选项D符合题意;AEC=CBE+BCE,ACE=CBE+BCE,CAD+ACE=90,CAD+CBE+BCE=90,选项C符合题意,故选:BCD【考点】题目主要考查全等三角形的判定和性质,三角形内角和定理及三角形的基本性质,熟练掌握全等三角形与三角形的基本性质是解题关键4、ACD【解析】【分析】根据三角形中线的定义:在三角形中,连接一个顶点和它所对的边的中点的线段,和角平分线的定义进行逐一判断即可【详解】解:AD是角平分线,BAC=90,DAB=DAC=45,故B选项不符合题意;AE是中线,AE=EC,故D符合题意;AD不是中线

    16、,AE不是角平分线,得不到BD=CD,ABE=CBE,A和C选项都符合题意,故选ACD【考点】本题主要考查了三角形中线的定义,角平分线的定义,解题的关键在于能够熟练掌握相关定义5、BC 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】根据三角形三边之间的关系:两边之和大于第三边,两边之差小于第三边结合题目条件“周长为12”,可得出正确答案【详解】A.2+22,5-54,4-45,3-35;但3+3+512;排除故选:BC【考点】本题主要考查了能够组成三角形三边之间的关系:两边之和大于大三边,两边之差小于第三边;注意结合题目条件“周长为12”三、填空题1、【解析】【分析】先求出正五

    17、边形各个内角的度数,然后在等腰中计算角度,即可得到的度数【详解】解:由n边形内角和公式 可得五边形的内角和为540,在等腰中,故答案为【考点】此题考查的是多边形的内角和及等腰三角形角度的计算,掌握计算公式是解题的关键2、4(答案不唯一,在3x9之内皆可)【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于三边”,求得第三边的取值范围,即可得出结果【详解】解:根据三角形的三边关系,得:第三边应大于6-3=3,而小于6+3=9,故第三边的长度3x9故答案为:4(答案不唯一,在3x9之内皆可)【考点】此题主要考查了三角形的三边关系,根据三角形三边关系定理列出不等式,然后解不

    18、等式,确定取值范围即可3、105【解析】【分析】根据平行线的性质和等量代换可以求得3+4=5+4,所以根据三角形内角和是180进行解答即可【详解】 线 封 密 内 号学级年名姓 线 封 密 外 如图,ab,3=5,又1+2=75,1+2+4+5=180,5+4=105,3+4=5+4=105,故答案是:105【考点】本题考查了平行线的性质和三角形内角和定理解题的技巧性在于把求(3+4)的值转化为求同一三角形内的(5+4)的值4、28【解析】【分析】由于每个班都要和另外的7个班赛一场,一共要赛:78=56(场);又因为两个班只赛一场,去掉重复计算的情况,实际只赛:562=28(场),据此解答【详

    19、解】解:8(8-1)2=872=562=28(场)答:一共需要进行28场比赛故答案为28【考点】本题考查了握手问题的实际应用,要注意去掉重复计算的情况,如果班级比较少可以用枚举法解答,如果班级比较多可以用公式:比赛场数=n(n-1)2解答5、36【解析】【分析】利用多边形的内角和定理和等腰三角形的性质即可解决问题【详解】解:,是等腰三角形,度,故答案为:36【考点】本题主要考查了多边形的内角和定理和等腰三角形的性质 解题关键在于知道n边形的内角和为:180(n2)四、解答题1、(1)CMAN+MN,详见解析;(2)CMMNAN,详见解析【解析】【分析】(1)在AC上截取CDAN,连接OD,证明

    20、CDOANO,根据全等三角形的性质得到ODON,CODAON,证明DMONMO,得到DMMN,结合图形证明结论;(2)在AC延长线上截取CDAN,连接OD,仿照(1)的方法解答 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:(1)CMAN+MN,理由如下:在AC上截取CDAN,连接OD,ABC为等边三角形,BAC与ACB的角平分线交于点O,OACOCA30,OAOC,在CDO和ANO中,CDOANO(SAS)ODON,CODAON,MON60,COD+AOM60,AOC120,DOM60,在DMO和NMO中,DMONMO,DMMN,CMCD+DMAN+MN;(2)补全图形如图2所示

    21、:CMMNAN,理由如下:在AC延长线上截取CDAN,连接OD,在CDO和ANO中,CDOANO(SAS)ODON,CODAON,DOMNOM,在DMO和NMO中, 线 封 密 内 号学级年名姓 线 封 密 外 ,DMONMO(SAS)MNDM,CMDMCDMNAN【考点】此题主要考查全等三角形的判定与性质,解题的关键是熟知等边三角形的性质及全等三角形的判定定理2、 (1)见解析(2)【解析】【分析】(1)根据题意作的角平分线的交点,即为所求;(2)根据(1)的结论,设点到的距离为,则,解方程求解即可(1)如图,点即为所求,(2)设点到的距离为,由(1)可知点到、的距离相等则解得:点到的距离为

    22、【考点】本题考查了作角平分线,角平分线的性质,掌握角平分线的性质是解题的关键3、见解析【解析】【分析】根据AAS证明ABCDCE,得到DE= AC,BC=EC ,再进行线段的代换即可求解【详解】解:证明:BCDE,ACB=DEC,在ABC和DCE中,ABCDCE(AAS),DE= AC,BC=EC , 线 封 密 内 号学级年名姓 线 封 密 外 DE= AC=AE+EC =AE+BC【考点】本题考查了全等三角形的判定与性质,熟知全等三角形的判定定理并根据题意灵活应用是解题关键4、(1)125,90,35;(2)ABP+ACP=90-A,证明见解析;(3)结论不成立ABP-ACP=90-A,A

    23、BP+ACP=A-90或ACP - ABP =90-A【解析】【分析】(1)根据三角形内角和即可得出ABC+ACB,PBC+PCB,然后即可得出ABP+ACP;(2)根据三角形内角和定理进行等量转换,即可得出ABP+ACP=90-A;(3)按照(2)中同样的方法进行等量转换,求解即可判定.【详解】(1)ABC+ACB=180-A=180-55=125度,PBC+PCB=180-P=180-90=90度,ABP+ACP=ABC+ACB -(PBC+PCB)=125-90=35度;(2)猜想:ABP+ACP=90-A;证明:在ABC中,ABC+ACB180-A,ABC=ABP+PBC,ACB=AC

    24、P+PCB,(ABP+PBC)+(ACP+PCB)=180-A,(ABP+ACP)+(PBC+PCB)=180-A,又在RtPBC中,P=90,PBC+PCB=90,(ABP+ACP)+90=180-A,ABP+ACP=90-A(3)判断:(2)中的结论不成立证明:在ABC中,ABC+ACB180-A,ABC=PBC-ABP,ACB=PCB-ACP,(PBC+PCB)-(ABP+ACP)=180-A,又在RtPBC中,P=90,PBC+PCB=90,ABP-ACP=90-A,ABP+ACP=A-90或ACP - ABP =90-A【考点】此题主要考查利用三角形内角和定理进行等角转换,熟练掌握,

    25、即可解题.5、(1)见解析;(2);(3)【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 (1)延长到点G,使,连接,首先证明,则有,然后利用角度之间的关系得出,进而可证明,则,则结论可证;(2)分别作点A关于和的对称点,连接,交于点,交于点,根据轴对称的性质有,当点、在同一条直线上时,即为周长的最小值,然后利用求解即可;(3)旋转至的位置,首先证明,则有,最后利用求解即可【详解】(1)证明:如解图,延长到点,使,连接,在和中,在和中,;(2)解:如解图,分别作点A关于和的对称点,连接,交于点,交于点由对称的性质可得,此时的周长为当点、在同一条直线上时,即为周长的最小值,;(3)解:如解图,旋转至的位置, 线 封 密 内 号学级年名姓 线 封 密 外 ,在和中,【考点】本题主要考查全等三角形的判定及性质,轴对称的性质,掌握全等三角形的判定及性质是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年解析卷人教版数学八年级上册期中专项测试试题 B卷(含答案详解).docx
    链接地址:https://www.ketangku.com/wenku/file-712359.html
    相关资源 更多
  • 人教版三年级下册数学期末测试卷【全优】.docx人教版三年级下册数学期末测试卷【全优】.docx
  • 人教版三年级下册数学期末测试卷【中心小学】.docx人教版三年级下册数学期末测试卷【中心小学】.docx
  • 人教版三年级下册数学期末测试卷【word】.docx人教版三年级下册数学期末测试卷【word】.docx
  • 人教版三年级下册数学期末测试卷【b卷】.docx人教版三年级下册数学期末测试卷【b卷】.docx
  • 人教版三年级下册数学期末测试卷【a卷】.docx人教版三年级下册数学期末测试卷【a卷】.docx
  • 人教版三年级下册数学期末测试卷word版.docx人教版三年级下册数学期末测试卷word版.docx
  • 人教版三年级下册数学期末测试卷word.docx人教版三年级下册数学期末测试卷word.docx
  • 人教版三年级下册数学期末测试卷a4版打印.docx人教版三年级下册数学期末测试卷a4版打印.docx
  • 人教版三年级下册数学期末测试卷a4版.docx人教版三年级下册数学期末测试卷a4版.docx
  • 人教版三年级下册数学期末测试卷1套.docx人教版三年级下册数学期末测试卷1套.docx
  • 人教版三年级下册数学期中测试卷(黄金题型).docx人教版三年级下册数学期中测试卷(黄金题型).docx
  • 人教版三年级下册数学期中测试卷(预热题).docx人教版三年级下册数学期中测试卷(预热题).docx
  • 人教版三年级下册数学期中测试卷(达标题).docx人教版三年级下册数学期中测试卷(达标题).docx
  • 人教版三年级下册数学期中测试卷(轻巧夺冠).docx人教版三年级下册数学期中测试卷(轻巧夺冠).docx
  • 人教版三年级下册数学期中测试卷(能力提升).docx人教版三年级下册数学期中测试卷(能力提升).docx
  • 人教版三年级下册数学期中测试卷(考试直接用).docx人教版三年级下册数学期中测试卷(考试直接用).docx
  • 人教版三年级下册数学期中测试卷(考点梳理).docx人教版三年级下册数学期中测试卷(考点梳理).docx
  • 人教版三年级下册数学期中测试卷(考点提分).docx人教版三年级下册数学期中测试卷(考点提分).docx
  • 人教版三年级下册数学期中测试卷(综合题).docx人教版三年级下册数学期中测试卷(综合题).docx
  • 人教版三年级下册数学期中测试卷(综合卷).docx人教版三年级下册数学期中测试卷(综合卷).docx
  • 人教版三年级下册数学期中测试卷(精选题).docx人教版三年级下册数学期中测试卷(精选题).docx
  • 人教版三年级下册数学期中测试卷(精练).docx人教版三年级下册数学期中测试卷(精练).docx
  • 人教版三年级下册数学期中测试卷(突破训练).docx人教版三年级下册数学期中测试卷(突破训练).docx
  • 人教版三年级下册数学期中测试卷(研优卷).docx人教版三年级下册数学期中测试卷(研优卷).docx
  • 人教版三年级下册数学期中测试卷(真题汇编).docx人教版三年级下册数学期中测试卷(真题汇编).docx
  • 人教版三年级下册数学期中测试卷(模拟题).docx人教版三年级下册数学期中测试卷(模拟题).docx
  • 人教版三年级下册数学期中测试卷(有一套).docx人教版三年级下册数学期中测试卷(有一套).docx
  • 人教版三年级下册数学期中测试卷(易错题).docx人教版三年级下册数学期中测试卷(易错题).docx
  • 人教版三年级下册数学期中测试卷(巩固).docx人教版三年级下册数学期中测试卷(巩固).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1