2022年高考数学一轮复习 考点规范练63 二项分布与正态分布(含解析)新人教A版.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高考数学一轮复习 考点规范练63 二项分布与正态分布含解析新人教A版 2022 年高 数学 一轮 复习 考点 规范 63 二项分布 正态分布 解析 新人
- 资源描述:
-
1、考点规范练63二项分布与正态分布基础巩固1.某居民小区有两个相互独立的安全防范系统A和B,系统A和系统B在任意时刻发生故障的概率分别为18和p.若在任意时刻恰有一个系统不发生故障的概率为940,则p=()A.110B.215C.16D.15答案:B解析:由题意,得18(1-p)+78p=940,故p=215,故选B.2.已知随机变量服从正态分布N(2,2),P(4)=0.8,则P(02)=()A.0.6B.0.4C.0.3D.0.2答案:C解析:P(4)=0.8,P(4)=0.2.由题意知图象的对称轴为直线x=2,P(0)=P(4)=0.2,P(04)=1-P(0)-P(4)=0.6.P(02
2、)=12P(04)=0.3.3.甲、乙两人进行乒乓球比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为23,则甲以31的比分获胜的概率为()A.827B.6481C.49D.89答案:A解析:第四局甲第三次获胜,并且前三局甲获胜两次,所以所求的概率为P=C322321323=827.4.一个盒子里装有大小、形状、质地相同的12个球,其中黄球5个、蓝球4个、绿球3个.现从盒子中随机取出两个球,记事件A为“取出的两个球颜色不同”,事件B为“取出一个黄球、一个绿球”,则P(B|A)=()A.1247B.211C.2047D.1547答案:D解析:因为P(A)=54+
3、53+43C122=4766,P(AB)=53C122=522,所以P(B|A)=P(AB)P(A)=1547.5.甲、乙两名同学参加一项射击比赛游戏,其中任何一人射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为35和p,且甲、乙两人各射击一次得分之和为2的概率为920.假设甲、乙两人射击互不影响,则p的值为()A.35B.45C.34D.14答案:C解析:设“甲射击一次,击中目标”为事件A,“乙射击一次,击中目标”为事件B,则“甲射击一次,未击中目标”为事件A,“乙射击一次,未击中目标”为事件B,则P(A)=35,P(A)=1-35=25,P(B)=p,P(B)=1-
4、p,依题意得35(1-p)+25p=920,解得p=34.故选C.6.一袋中有5个白球、3个红球,这些球除颜色外完全相同.现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X次球,则P(X=12)等于()A.C12103810582B.C12938958238C.C119582382D.C1193810582答案:D解析:由题意知第12次取到红球,前11次中恰有9次红球2次白球,因为每次取到红球的概率为38,所以P(X=12)=C11938958238=C1193810582.7.三个元件T1,T2,T3正常工作的概率分别为12,23,34,且是相互独立的.
5、如图,将T2,T3两个元件并联后再与T1元件串联接入电路,则电路不发生故障的概率是()A.1124B.2324C.14D.1732答案:A解析:记T1正常工作为事件A,记T2正常工作为事件B,记T3正常工作为事件C,则P(A)=12,P(B)=23,P(C)=34,电路不发生故障,则满足T1正常工作,T2,T3至少有一个正常工作.T2,T3至少有一个正常工作的概率为P1=1-P(BC)=1-1-231-34=1112.故电路不发生故障的概率P=121112=1124.8.1 000名考生的某次成绩近似服从正态分布N(530,502),则成绩在630分以上的考生人数约为.(注:正态分布N(,2)
6、在区间(-,+),(-2,+2),(-3,+3)内取值的概率分别为0.682 7,0.954 5,0.997 3)答案:23解析:由题意可知=530,=50,在区间(430,630)的概率为0.9545,故成绩在630分以上的概率为1-0.954520.023,因此成绩在630分以上的考生人数约为10000.023=23.9.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以41获胜的概率是.答案:0.18解析:前五
7、场中有一场客场输时,甲队以41获胜的概率是0.630.50.52=0.108;前五场中有一场主场输时,甲队以41获胜的概率是0.40.620.520.6=0.072.综上所述,甲队以41获胜的概率是0.108+0.072=0.18.10.甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12.(1)求甲连胜四场的概率;(2)
8、求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.解:(1)甲连胜四场的概率为116.(2)根据赛制,至少需要进行四场比赛,至多需要进行五场比赛.比赛四场结束,共有三种情况:甲连胜四场的概率为116;乙连胜四场的概率为116;丙上场后连胜三场的概率为18.所以需要进行第五场比赛的概率为1-116-116-18=34.(3)丙最终获胜,有两种情况:比赛四场结束且丙最终获胜的概率为18;比赛五场结束且丙最终获胜,则从第二场开始的四场比赛按照丙的胜、负、轮空结果有三种情况:胜胜负胜,胜负空胜,负空胜胜,概率分别为116,18,18.因此丙最终获胜的概率为18+116+18+18=716.11.某
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-717297.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
