2023届高三寒假数学二轮微专题45讲 35-极点极线结构及非对称韦达定理.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023届高三寒假数学二轮微专题45讲 35-极点极线结构及非对称韦达定理 2023 届高三 寒假 数学 二轮 专题 45 35 极点 结构 对称 定理
- 资源描述:
-
1、极点极线结构及非对称韦达定理1.基础知识:极点极线椭圆极点和极线的定义与作图:已知椭圆(ab0),则称点和直线为椭圆的一对极点和极线.极点和极线是成对出现的.从定义我们共同思考和讨论几个问题并写下你的思考:(1)若点在椭圆上,则其对应的极线是什么?(2)椭圆的两个焦点对应的极线分别是什么?(3)过椭圆外(上、内)任意一点,如何作出相应的极线?如图,若点在曲线外,过点作两条割线依次交曲线于且与交于,延长交于点,则直线即为点所对应的极线.假设椭圆方程为(1)焦点与准线:点与直线;(2)点与直线2.非对称韦达定理在一元二次方程中,若,设它的两个根分别为,则有根与系数关系:,借此我们往往能够利用韦达定
2、理来快速处理、之类的“对称结构”,但有时,我们会遇到涉及的不同系数的代数式的应算,比如求、之类的结构,就相对较难地转化到应用韦达定理来处理了.特别是在圆锥曲线问题中,我们联立直线和圆锥曲线方程,消去或 ,也得到一个一元二次方程,我们就会面临着同样的困难,可采用反过来应用韦达定理,会有较好的作用.3.典例(2020一卷)已知A、B分别为椭圆E:(a1)的左、右顶点,G为E的上顶点,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D(1)求E的方程;(2)证明:直线CD过定点.解析:由椭圆方程可得:, ,椭圆方程为:(2)证明:设,则直线的方程为:,即:联立直线的方程与椭圆方程可得:,整理得:,解得:或将代入直线可得:所以点的坐标为.同理可得:点的坐标为当时,直线的方程为:,整理可得:整理得:所以直线过定点当时,直线:,直线过点故直线CD过定点例2已知椭圆:,点在椭圆上(1)求椭圆的方程;(2)若过点且不与轴垂直的直线与椭圆交于,两点,证明,斜率之积为定值解析:(1)由题意得,故椭圆为,又点在上,所以,得,故椭圆的方程即为;(2)由已知直线过,设的方程为,联立两个方程得,消去得:,得,设,则,(*),因为,故,将(*)代入上式,可得:,直线与斜率之积为定值
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-753690.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
