22年高考数学临考最后热身卷.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 22 年高 数学 最后 热身
- 资源描述:
-
1、高考数学临考最后热身卷这是一套在考前供考生进一步熟悉高考数学试题所需主要知识与方法的试卷,绝不是什么押题、猜题卷,本试卷对一些相对次要的内容也没有涉及(如函数零点、几何概型、统计初步、统计案例等),希望使用者注意。实际上高考数学试题是很难被我们原封不动命中的,解答高考数学试题是靠考生对考试大纲上所规定的基本知识、基本方法的熟练掌握以及分析问题、解决问题的能力,也可以说是对解题的迁移能力完成的,本试卷仅仅供高考考前热身只用!一 选择题(每题5分,满分60分)1已知是虚数单位,和都是实数,且,则等于( )ABCD【解析】A 根据复数相等的充要条件,故【考前寄语】复数的考查重在概念与代数形式的四则运
2、算,注意两个复数相等的充要条件、复数除法的运算规则2.一个容器的外形是一个棱长为的正方体,其三视图如图所示,则容器的容积为 ( )A. B. C. D.【解析】C 容器的内部是一个圆锥,高为,底面半径为,故其体积为【考前寄语】三视图的规则是“长对正、高平齐、宽相等”,注意实际几何体的可见轮廓线在三视图中是实线、不可见轮廓线是虚线3已知函数的图象,(部分)如图所示,则的解析式是 ( ) A B C D【解析】A 根据五点法作图的方法,解得【考前寄语】三角函数的图象反应了三角函数的性质,是高考重点考查的一个知识点注意“五点法作图”规则的“逆用”,如本题中如果是用五点法作函数图象,那么函数图象上点中
3、的,就是令求出来的,必然适合这个方程,同理适合方程4阅读右侧的算法框图,输出的结果的值为 ( ) A B C D【解析】A 该程序的功能是计算的值,根据周期性,这个算式中每连续个的值等于,故这个值等于前个的和,即【考前寄语】带有循环结构的程序框图中,其关键作用是是计数变量和累加变量,在解题时要注意“循环变量的控制条件”和“累加变量的变化规律”5设全集,若集合,则为( )AB或C或D【解析】C ,故集合,或,即或(无解),即,故集合,集合,故【考前寄语】带有绝对值的不等式是山东的一个重要考点同学们要熟悉大纲要求的几类绝对值不等式的解法6对于二项式(),四位同学作出了四种判断:存在,展开式中有常数
4、项; 对任意,展开式中没有常数项;对任意,展开式中没有的一次项; 存在,展开式中有的一次项.上述判断中正确的是A. 与 B. 与 C. 与 D. 与 【解析】C 展开式的通项公式是,故只要存在正整数和自然数使即可,如,故存在,展开式中有常数项;同理存在,展开式中有的一次项【考前寄语】二项式定理的核心是其通项公式,同时要注意特殊值法在于二项式定理有关问题中的应用7.若,则的值为 【解析】C , 于是,【考前寄语】三角恒等变换主要是考查两角和、二倍角的正弦、余弦和正切公式的应用,特别要注意二倍角的余弦公式及其各个变形的运用8若,命题;命题直线与圆相交,则 是的A充分不必要条件 B必要不充分条件C充
5、分必要条件 D既不充分也不必要条件【解析】A 命题等价于,命题等价于即,显然由命题可得命题,反之不真【考前寄语】解题时注意隐含条件的挖掘,如本题中等价转化就需要把隐含的条件找出来注意从集合的观点认识充要条件9设实数满足,则的取值范围是 ( ) A B C D【解析】C 在坐标平面上点所表示的区域如图所示,令,根据几何意义,的值即为区域内的点与坐标原点连线的斜率,显然点是其中的两个临界值,点,点,故,这个关于的函数在上单调递减、在上单调递增,故其最小值为,最大值为两个端点值中的大者,计算知最大值为【考前寄语】线性规划类考题已经不仅仅局限在目标函数是线性的,但解决问题的思想方法是一致的,在解决这类
6、问题时,要注意分析目标函数,进行适当的转化10. 已知函数在上为减函数,则实数的取值范围是( )A. B. C.D.【解析】 ,因为在上为减函数,故在上恒成立,即在上恒成立,等价于在上的最大值设,故,选答案D【考前寄语】如果是给出一个函数求其单调递减区间,我们只要解不等式即可,但当已知一个函数在一个指定区间上单调递减时,必须是在这个区间上恒成立、但不恒为这类问题一般就是转化为一个不等式恒成立问题,这个不等式如果能分离参数、分离参数是一个有效的策略11.在中,为边上的高,为的中点,若,则的值为 【解析】A 建立如图所示的平面直角坐标系,由题意,知, ,即,解得, 故选A【考前寄语】本题考查的是平
7、面向量基本定理的应用,同学们的一般心理是直接在三角形中寻找问题的答案,想不到建立坐标系、通过向量的坐标运算解决,这个题目给大家提个醒,在适合建立坐标系的情况下,向量问题用坐标解决更为方便12. 将红、黑、白三个棋子放入如图所示的小方格内,每格内只放一个,且个棋子既不同行也不同列,则不同的放法有( )A. 种 B. 种 C. 种 D. 种【解析】A 问题可以这样考虑,先在四行选一行、四列选一列,安放红色棋子,有方法数,这样还剩余三行三列,同样选一行一列安放黑色棋子,有方法数,同理白色棋子的安放方法数为,故总的方法数为【考前寄语】有限制的排列、组合问题是高考考查的重点,解决这类问题要考虑特殊位置或
8、特殊元素,一般是先解决这类特殊的问题二 填空题(每题4分、共16分)13.在中, 则的长为 【解析】 依已知条件,根据正弦定理得,两式相加得,即,即【考前寄语】正、余弦定理是高中数学的两个重要定理,注意这两个定理的变形在涉及到三角形边角关系的题目中,正、余弦定理是实现边角转化的工具,要结合题目的具体环境,实现这个转化,但一般来说,把边的关系转化为角的关系、通过三角恒等变换解决问题是常用的思考方式14已知抛物线焦点恰好是双曲线的右焦点,且两条曲线交点的连线过点,则该双曲线的离心率为 .【解析】 ,根据对称性,两曲线交点连线垂直于轴,对双曲线这两个交点连线的长度是、对抛物线这两个交点连线的长度是,
9、即,故,故,即,即,解得【考前寄语】在求椭圆、双曲线离心率的题目中,就是寻找所满足的一个方程,只要这个方程找出来了,就可以将其转化为只含有的方程,很多问题中这个关于的方程是一个齐次方程,就可以通过把这个方程两端同除以等,把其转化为一个关于离心率的方程,解这个方程就可以解决问题要注意的是椭圆和双曲线中关系是不同的,许多同学就是把这个关系弄错,导致解题失误的15.曲线,直线所围成的区域的面积是 【解析】如图所示,这个面积等于定积分【考前寄语】定积分的主要考查点就是利用微积分基本定理计算定积分和其在求曲边形面积中的应用积分计算是导数计算的逆运算,解题时要根据导数公式检验积分运算16对于任意的实数和,
10、不等式恒成立,则实数的取值范围是 【解析】 问题等价于,而,故,又,故,根据绝对值的几何意义的范围是【考前寄语】绝对值三角不等式是山东的一个重要考点,本题的目的是让同学们会使用绝对值三角不等式求最值再举个例子,如求函数的最小值,就可以根据直接解决三 解答题(本题满分74分)17. (本小题满分12分)如图所示,某动物园要为刚入园的小老虎建造一间两面靠墙的三角形露天活动室,已知已有两面墙的夹角为(即),现有可供建造第三面围墙的材料米(两面墙的长均大于米),为了使得小老虎能健康成长,要求所建造的三角形露天活动室尽可能大,记,问当为多少时,所建造的三角形露天活动室的面积最大?【解析】在中, 化简得,
11、 所以 即 所以当即时,= 答:当时,所建造的三角形露天活动室的面积最大【考前寄语】三角函数解答题主要是以三角恒等变换为工具,综合考查三角函数的图象与性质,往往与平面向量的数量积、解三角形相结合,本题就是以一个简单的实际问题出发设计的一个考查三角形中的正弦定理、三角恒等变换、三角函数性质的题目,完整解答该题必须对三角恒等变换十分熟练18.(本题满分12分)某校设计了一个实验学科的实验考查方案:考生从道备选题中一次性随机抽取题,按照题目要求独立完成全部实验操作. 规定:至少正确完成其中题的便可通过考查. 已知道备选题中考生甲有题能正确完成,题不能完成;考生乙每题正确完成的概率都是,且每题正确完成
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
新教材2020-2021学年高中英语外研版必修第三册课件:UNIT 2 MAKING A DIFFERENCE PERIOD 3 .ppt
