8.第八章解析几何2017-2021年五年高考全国卷理科分类汇编及考向预测高考全国卷理科分类汇编.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 8.第八章 解析几何2017-2021年五年高考全国卷理科分类汇编及考向预测高考全国卷理科分类汇编 第八 解析几何 2017 2021 年高 全国卷 理科 分类 汇编 预测 高考
- 资源描述:
-
1、一、真题汇编1.【2017课标理 10】已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为A16B14C12D102.【2017课标理15】 已知双曲线C:(a0,b0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M,N两点.若MAN=60,则C的离心率为 .3.【2017课标理20】 已知椭圆C:(ab0),四点P1(1,1),P2(0,1),P3(1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.
2、若直线P2A与直线P2B的斜率的和为1,证明:l过定点.4.【2017课标II理9】若双曲线(,)的一条渐近线被圆所截得的弦长为2,则的离心率为A2BCD5.【2017课标II理16】已知是抛物线的焦点,是上一点,的延长线交轴于点若为的中点,则_6.【2017课标II理20】设O为坐标原点,动点M在椭圆C:上,过M作x轴的垂线,垂足为N,点P满足(1)求点P的轨迹方程;(2)设点Q在直线上,且证明:过点P且垂直于OQ的直线l过C的左焦点F 7.【2017课标III理5】已知双曲线C:(a0,b0)的一条渐近线方程为,且与椭圆有公共焦点,则C的方程为AB CD8.【2017课标III理10】已知
3、椭圆C:的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线相切,则C的离心率为AB CD9.【2017课标III理20】已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点,求直线l与圆M的方程.10.【2018课标理 8】 设抛物线C:y2=4x的焦点为F,过点(2,0)且斜率为的直线与C交于M,N两点,则=A. 5B. 6C. 7D. 811【2018课标理 11】已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直角三角形,则|MN|=
4、A. B. 3C. D. 412.【2018课标理 19】设椭圆的右焦点为,过的直线与交于两点,点的坐标为.(1)当与轴垂直时,求直线的方程;(2)设为坐标原点,证明:.13.【2018课标II理5】 双曲线的离心率为,则其渐近线方程为A. B. C. D. 14.【2018课标II理12】已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,则的离心率为A. B. C. D. 15.【2018课标II理19】 设抛物线的焦点为,过且斜率为的直线与交于,两点, (1)求的方程; (2)求过点,且与的准线相切的圆的方程16.【2018课标III理11】设,是双曲线()的左、
5、右焦点,是坐标原点过作的一条渐近线的垂线,垂足为若,则的离心率为A. B. C. D. 17.【2018课标III理16】已知点和抛物线,过的焦点且斜率为的直线与交于,两点若,则_18.【2018课标III理20】已知斜率为的直线与椭圆交于,两点,线段的中点为(1)证明:;(2)设为右焦点,为上一点,且证明:,成等差数列,并求该数列的公差19.【2019课标理 10】 已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,则C的方程为A. B. C. D. 20.【2019课标理 16】已知双曲线C:的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点若,则C的离心率
6、为_21.【2019课标理 19】已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P(1)若|AF|+|BF|=4,求l的方程;(2)若,求|AB|22.【2019课标II 理8】若抛物线y2=2px(p0)的焦点是椭圆的一个焦点,则p=A. 2B. 3C. 4D. 823.【2019课标 II 理11】设F为双曲线C:(a0,b0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点若|PQ|=|OF|,则C的离心率为A. B. C. 2D. 24.【2019课标II 理21】已知点A(2,0),B(2,0),动点M(x,y)满足直线
7、AM与BM的斜率之积为.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PEx轴,垂足为E,连结QE并延长交C于点G.(i)证明:是直角三角形;(ii)求面积的最大值.25.【2019课标III理10】双曲线C:=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点,若,则PFO的面积为A. B. C. D. 26.【2019课标III理15】 设为椭圆的两个焦点,为上一点且在第一象限.若为等腰三角形,则的坐标为_.27.【2019课标III理21】已知曲线C:y=,D为直线y=上的动点,过D作C的两条切线,切点分别为A,B.(
8、1)证明:直线AB过定点:(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.28.【2020课标理 4】已知A为抛物线C:y2=2px(p0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=( )A. 2B. 3C. 6D. 929.【2020课标理11】已知M:,直线:,为上的动点,过点作M的切线,切点为,当最小时,直线的方程为( )A. B. C. D. 30.【2020课标理 15】已知F为双曲线的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C的离心率为_.31.【2020课标理20】 已知A、B分别
9、为椭圆E:(a1)的左、右顶点,G为E的上顶点,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D(1)求E的方程;(2)证明:直线CD过定点.32.【2020课标II 理5】若过点(2,1)的圆与两坐标轴都相切,则圆心到直线的距离为( )A. B. C. D. 33.【2020课标II 理8】设为坐标原点,直线与双曲线的两条渐近线分别交于两点,若的面积为8,则的焦距的最小值为( )A. 4B. 8C. 16D. 3234.【2020课标II 理19】已知椭圆C1:(ab0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两
10、点,交C2于C,D两点,且|CD|=|AB|.(1)求C1的离心率;(2)设M是C1与C2的公共点,若|MF|=5,求C1与C2的标准方程.35.【2020课标III理5】 设为坐标原点,直线与抛物线C:交于,两点,若,则的焦点坐标为( )A. B. C. D. 36.【2020课标III理10】若直线l与曲线y=和x2+y2=都相切,则l的方程为( )A. y=2x+1B. y=2x+C. y=x+1D. y=x+37.【2020课标III理11】 设双曲线C:(a0,b0)的左、右焦点分别为F1,F2,离心率为P是C上一点,且F1PF2P若PF1F2的面积为4,则a=( )A. 1B. 2
11、C. 4D. 838.【2020课标III理20】已知椭圆的离心率为,分别为的左、右顶点(1)求的方程;(2)若点在上,点在直线上,且,求的面积39.【2021全国甲卷理5】已知是双曲线C的两个焦点,P为C上一点,且,则C的离心率为( )A. B. C. D. 40.【2021全国甲卷理15】已知为椭圆C:的两个焦点,P,Q为C上关于坐标原点对称的两点,且,则四边形的面积为_41.【2021全国甲卷理20】抛物线C的顶点为坐标原点O焦点在x轴上,直线l:交C于P,Q两点,且已知点,且与l相切(1)求C,的方程;(2)设是C上的三个点,直线,均与相切判断直线与的位置关系,并说明理由42.【202
12、1全国乙卷理11】设是椭圆的上顶点,若上的任意一点都满足,则的离心率的取值范围是( )A. B. C. D. 43.【2021全国乙卷理13】已知双曲线的一条渐近线为,则C的焦距为_44.【2021全国乙卷理21】已知抛物线的焦点为,且与圆上点的距离的最小值为(1)求;(2)若点在上,是的两条切线,是切点,求面积的最大值二、详解品评1.【答案】A【考点】抛物线的简单几何性质【名师点睛】对于抛物线弦长问题,要重点抓住抛物线定义,到定点的距离要想到转化到准线上,另外,直线与抛物线联立,求判别式,利用根与系数的关系是通法,需要重点掌握.考查最值问题时要能想到用函数方法和基本不等式进行解决.此题还可以
13、利用弦长的倾斜角表示,设直线的倾斜角为,则,则,所以2.【答案】【解析】试题分析:如图所示,作,因为圆A与双曲线C的一条渐近线交于M、N两点,则为双曲线的渐近线上的点,且,而,所以,点到直线的距离,在中,代入计算得,即,由得,所以.【考点】双曲线的简单几何性质【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题备受出题者的青睐.做好这一类问题要抓住以下重点:求解渐近线,直接把双曲线后面的1换成0即可;双曲线的焦点到渐近线的距离是;双曲线的顶点到渐近线的距离是.3.【解析】试题分析:(1)根据,两点关于y轴对称,由椭圆的对称性可知C经过,两点.另外由知,C不经过点P1,所以点P2在C上.因
14、此在椭圆上,代入其标准方程,即可求出C的方程;(2)先设直线P2A与直线P2B的斜率分别为k1,k2,再设直线l的方程,当l与x轴垂直时,通过计算,不满足题意,再设l:(),将代入,写出判别式,利用根与系数的关系表示出x1+x2,x1x2,进而表示出,根据列出等式表示出和的关系,从而判断出直线恒过定点.试题解析:(1)由于,两点关于y轴对称,故由题设知C经过,两点.又由知,C不经过点P1,所以点P2在C上.因此解得故C的方程为.(2)设直线P2A与直线P2B的斜率分别为k1,k2,如果l与x轴垂直,设l:x=t,由题设知,且,可得A,B的坐标分别为(t,),(t,).则,得,不符合题设.从而可
15、设l:().将代入得.由题设可知.设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=.而.由题设,故.即.解得.当且仅当时,于是l:,即,所以l过定点(2,).【考点】椭圆的标准方程,直线与圆锥曲线的位置关系【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中未告知,则一定要讨论直线斜率不存在和存在两种情况,其通法是联立方程,求判别式,利用根与系数的关系,再根据题设关系进行化简.4.【答案】A【解析】试题分
16、析:由几何关系可得,双曲线的渐近线方程为,圆心到渐近线距离为,则点到直线的距离为,即,整理可得,双曲线的离心率故选A【考点】 双曲线的离心率学科&网;直线与圆的位置关系,点到直线的距离公式【名师点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:求出a,c,代入公式;只需要根据一个条件得到关于a,b,c的齐次式,结合b2c2a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围)5.【答案】6【解析】试题分析:如图所示,不妨设点M位于第一象限,设抛物线的准线与轴交于点
17、,作与点,与点,由抛物线的解析式可得准线方程为,则,在直角梯形中,中位线,由抛物线的定义有:,结合题意,有,故【考点】抛物线的定义、梯形中位线在解析几何中的应用【名师点睛】抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化6.【答案】(1) ;(2)证明略【考点】 轨迹方程的求解、直线过定点问题【名师点睛】求轨迹方程的常用方法:(1)直接法
18、:直接利用条件建立x,y之间的关系F(x,y)0(2)待定系数法:已知所求曲线的类型,求曲线方程(3)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程(4)代入(相关点)法:动点P(x,y)依赖于另一动点Q(x0,y0)的变化而运动,常利用代入法求动点P(x,y)的轨迹方程7.【答案】B【解析】【考点】双曲线与椭圆共焦点问题;待定系数法求双曲线的方程【名师点睛】求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a,b,c,e及渐近线之间的关系,求出a,b的值.如果已知双曲线的渐近线方程,求双曲线的标准
19、方程,可利用有公共渐近线的双曲线方程为,再由条件求出的值即可.8.【答案】A【解析】【考点】椭圆的离心率的求解;直线与圆的位置关系【名师点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见的有两种方法:求出a,c,代入公式e;只需要根据一个条件得到关于a,b,c的齐次式,结合b2a2c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).9.【答案】(1)证明略;(2)直线的方程为,圆的方程为.或直线的方程为,圆的方程为【解析】试题分析:(1)设出点的坐标,联立直线与抛物线的方程,由
20、斜率之积为可得,即得结论;(2)结合(1)的结论求得实数的值,分类讨论即可求得直线的方程和圆的方程.(2)由(1)可得.故圆心的坐标为,圆的半径.由于圆过点,因此,故,即,由(1)可得.所以,解得或.当时,直线的方程为,圆心的坐标为,圆的半径为,圆的方程为.当时,直线的方程为,圆心的坐标为,圆的半径为,圆 的方程为.【考点】直线与抛物线的位置关系;圆的方程【名师点睛】直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;在解决直线与抛物线的位置关系时,要特别注意直线与抛物线的对称轴平行的特殊情况.中点弦问题,可以利用“点差法”,但不要忘记验证或说明中点在曲线内部.
21、10【答案】D【解析】【分析】首先根据题中的条件,利用点斜式写出直线的方程,涉及到直线与抛物线相交,联立方程组,消元化简,求得两点,再利用所给的抛物线的方程,写出其焦点坐标,之后应用向量坐标公式,求得,最后应用向量数量积坐标公式求得结果.【详解】根据题意,过点(2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.【点睛】该题考查的是有关直线与抛物线相交求有关交点坐标所满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程组,消元化简求解,从而确定出,之后借助于抛物线的方程求得,最后一步应用向量坐标公式求得向量的坐标,之
22、后应用向量数量积坐标公式求得结果,也可以不求点M、N的坐标,应用韦达定理得到结果.11.【答案】B【解析】【详解】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到,根据直角三角形的条件,可以确定直线的倾斜角为或,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得,利用两点间距离公式求得的值.详解:根据题意,可知其渐近线的斜率为,且右焦点为,从而得到,所以直线的倾斜角为或,根据双曲线的对称性,设其倾斜角为,可以得出直线的方程为,分别与两条渐近线和联立,求得,所以,故选B.点睛:该题考查的
23、是有关线段长度的问题,在解题的过程中,需要先确定哪两个点之间的距离,再分析点是怎么来的,从而得到是直线的交点,这样需要先求直线的方程,利用双曲线的方程,可以确定其渐近线方程,利用直角三角形的条件得到直线的斜率,结合过右焦点的条件,利用点斜式方程写出直线的方程,之后联立求得对应点的坐标,之后应用两点间距离公式求得结果.12.【答案】(1)的方程为或;(2)证明见解析.【解析】【分析】(1)首先根据与轴垂直,且过点,求得直线的方程为,代入椭圆方程求得点的坐标为或,利用两点式求得直线的方程;(2)分直线与轴重合、与轴垂直、与轴不重合也不垂直三种情况证明,特殊情况比较简单,也比较直观,对于一般情况将角
24、相等通过直线的斜率的关系来体现,从而证得结果.【详解】(1)由已知得,l的方程为.由已知可得,点的坐标为或.所以的方程为或.(2)当与轴重合时,.当与轴垂直时,为的垂直平分线,所以.当与轴不重合也不垂直时,设的方程为,则,直线、的斜率之和为.由得.将代入得所以,.则.从而,故、的倾斜角互补,所以.综上,.【点睛】该题考查的是有关直线与椭圆的问题,涉及到的知识点有直线方程的两点式、直线与椭圆相交的综合问题、关于角的大小用斜率来衡量,在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,在做题的时候需要先将特殊情况说明,一般情况下,涉及到直线与曲线相交
25、都需要联立方程组,之后韦达定理写出两根和与两根积,借助于斜率的关系来得到角是相等的结论.13.【答案】A【解析】详解】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:因为渐近线方程为,所以渐近线方程为,选A.点睛:已知双曲线方程求渐近线方程:.14.【答案】D【解析】【详解】分析:先根据条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.详解:因为为等腰三角形,所以PF2=F1F2=2c,由斜率为得,由正弦定理得,所以,故选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而
26、建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.15.【答案】(1) y=x1,(2)或【解析】【详解】分析:(1)根据抛物线定义得,再联立直线方程与抛物线方程,利用韦达定理代入求出斜率,即得直线方程;(2)先求AB中垂线方程,即得圆心坐标关系,再根据圆心到准线距离等于半径得等量关系,解方程组可得圆心坐标以及半径,最后写出圆的标准方程.详解:(1)由题意得F(1,0),l的方程为y=k(x1)(k0)设A(x1,y1),B(x2,y2)由得 ,故所以由题设知,解得k=1(舍去),k=1因此l的方程为y=x1(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平
27、分线方程为,即设所求圆的圆心坐标为(x0,y0),则解得或因此所求圆的方程为或点睛:确定圆的方程方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程(2)待定系数法若已知条件与圆心和半径有关,则设圆的标准方程依据已知条件列出关于的方程组,从而求出的值;若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D、E、F的方程组,进而求出D、E、F的值16.【答案】B【解析】【详解】分析:由双曲线性质得到,然后在和在中利用余弦定理可得详解:由题可知在中,在中,故选B.点睛:本题主要考查双曲线的相关知识,考查了双曲线的离心率和余弦定理的应用,属于中档题 17.【
28、答案】2【解析】【分析】利用点差法得到AB的斜率,结合抛物线定义可得结果.【详解】详解:设则所以所以取AB中点,分别过点A,B作准线的垂线,垂足分别为因为,,因为M为AB中点,所以MM平行于x轴因为M(-1,1)所以,则即故答案为2.【点睛】本题主要考查直线与抛物线的位置关系,考查了抛物线的性质,设,利用点差法得到,取AB中点, 分别过点A,B作准线的垂线,垂足分别为,由抛物线的性质得到,进而得到斜率 18.【答案】(1)(2)或【解析】分析:(1)设而不求,利用点差法进行证明(2)解出m,进而求出点P的坐标,得到,再由两点间距离公式表示出,得到直的方程,联立直线与椭圆方程由韦达定理进行求解详
29、解:(1)设,则.两式相减,并由得.由题设知,于是.由题设得,故.(2)由题意得,设,则.由(1)及题设得.又点PC上,所以,从而,.于是.同理.所以.故,即成等差数列.设该数列的公差为d,则.将代入得.所以l的方程为,代入C的方程,并整理得.故,代入解得.所以该数列的公差为或.点睛:本题主要考查直线与椭圆的位置关系,等差数列的性质,第一问利用点差法,设而不求可减小计算量,第二问由已知得到,求出m得到直线方程很关键,考查了函数与方程的思想,考察学生的计算能力,难度较大 19.【答案】B【解析】【分析】由已知可设,则,得,在中求得,再在中,由余弦定理得,从而可求解.【详解】法一:如图,由已知可设
30、,则,由椭圆的定义有在中,由余弦定理推论得在中,由余弦定理得,解得所求椭圆方程为,故选B法二:由已知可设,则,由椭圆的定义有在和中,由余弦定理得,又互补,两式消去,得,解得所求椭圆方程为,故选B【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养20.【答案】2【解析】【分析】通过向量关系得到和,得到,结合双曲线的渐近线可得从而由可求离心率.【详解】如图,由得又得OA是三角形的中位线,即由,得则有,又OA与OB都是渐近线,得又,得又渐近线OB的斜率为,所以该双曲线的离心率为【点睛】本题考查平面向量结合双曲线的渐进线和离心率,渗透
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-777654.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
