《课堂设计》2015-2016学年高二数学北师大版选修2-1课后作业:3.4.1 曲线与方程 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 课堂设计 课堂设计2015-2016学年高二数学北师大版选修2-1课后作业:3.4.1 曲线与方程 WORD版含解析 课
- 资源描述:
-
1、4曲线与方程4.1曲线与方程1.下列命题正确的是()A.方程xy-2=1表示斜率为1,在y轴上的截距是2的直线B.ABC的顶点坐标分别为A(0,3),B(-2,0),C(2,0),则中线AO的方程是x=0C.到x轴距离为5的点的轨迹方程是y=5D.曲线2x2-3y2-2x+m=0通过原点的充要条件是m=0解析:选项A中直线不过(0,2)点;选项B中中线AO是线段;选项C中轨迹方程应是y=5.故选项A,B,C都错误,选D.答案:D2.已知P1(x1,y1)是直线l:f(x,y)=0上的一点,P2(x2,y2)是直线l外一点,则方程f(x,y)+f(x1,y1)+f(x2,y2)=0表示的直线l与
2、直线l的位置关系是()A.平行B.重合C.垂直D.斜交解析:点P1(x1,y1)在直线l:f(x,y)=0上,f(x1,y1)=0.f(x,y)+f(x1,y1)+f(x2,y2)=f(x,y)+f(x2,y2)=0,即l为f(x,y)=-f(x2,y2).又点P2(x2,y2)在直线l外,则f(x2,y2)=k0.l为f(x,y)=-k,即f(x,y)+k=0.答案:A3.ABCD的顶点A,C的坐标分别为(3,-1),(2,-3),顶点D在直线3x-y+1=0上移动,则顶点B满足的方程为()A.3x-y-20=0B.3x-y-10=0C.3x-y-12=0D.3x-y-9=0解析:设AC,B
3、D交于点P,点A,C的坐标分别为(3,-1),(2,-3),P点坐标为52,-2.设B为(x,y),则D为(5-x,-4-y),点D在直线3x-y+1=0上,15-3x+4+y+1=0,即3x-y-20=0.答案:A4.方程4x2-y2+4x+2y=0表示的曲线是()A.一个点B.两条互相平行的直线C.两条互相垂直的直线D.两条相交但不垂直的直线解析:4x2-y2+4x+2y=0,(2x+1)2-(y-1)2=0,2x+1=(y-1),2x+y=0或2x-y+2=0,这两条直线相交但不垂直.答案:D5.已知O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足OP=OA+AB|AB|+
4、AC|AC|,0,+),则点P的轨迹一定通过ABC的()A.外心B.内心C.重心D.垂心解析:令AB|AB|=e1,AC|AC|=e2,则由已知,得OP-OA=(e1+e2),即AP=e1+e2.由平行四边形法则且得到的平行四边形是菱形,知AP是BAC的平分线,故选B.答案:B6.已知两定点A(-2,0),B(1,0),如果动点P满足|PA|=2|PB|,则点P满足的方程的曲线所围成的图形的面积为()A.B.4C.8D.9解析:设P为(x,y),由|PA|=2|PB|,得(x+2)2+y2=2(x-1)2+y2,即(x-2)2+y2=4,点P满足的方程的曲线是以2为半径的圆,其面积为4.答案:
5、B7.已知02,点P(cos,sin)在曲线(x-2)2+y2=3上,则的值为.解析:(cos-2)2+sin2=3,得cos=12,所以=3或53.答案:3或538.若两直线x+y=3a,x-y=a的交点在方程x2+y2=1所表示的曲线上,则a=.解析:x+y=3a,x-y=a,x=2a,y=a.交点坐标为(2a,a).又该点在x2+y2=1上,(2a)2+a2=1,a=55.答案:559.已知O的方程是x2+y2-2=0,O的方程是x2+y2-8x+10=0,由动点P向O和O所引的切线长相等,则动点P的轨迹方程是.解析:由O:x2+y2=2,O:(x-4)2+y2=6,知两圆相离.设由动点
6、P向O和O所引的切线与O和O的切点分别为T,Q,则|PT|=|PQ|,而|PT|2=|PO|2-2,|PQ|2=|PO|2-6,|PO|2-2=|PO|2-6.设P(x,y),即得x2+y2-2=(x-4)2+y2-6,即x=32.答案:x=3210.已知点P(x0,y0)在曲线f(x,y)=0上,点P也在曲线g(x,y)=0上,求证:点P在曲线f(x,y)+g(x,y)=0上(R).证明:因为点P(x0,y0)在曲线f(x,y)=0上,所以f(x0,y0)=0.又因为点P(x0,y0)也在曲线g(x,y)=0上,所以g(x0,y0)=0.所以对R,有f(x0,y0)+g(x0,y0)=0+0
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-794810.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
孩子在依恋期里最需要的是父母的陪伴.pdf
