分享
分享赚钱 收藏 举报 版权申诉 / 8

类型【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题7 解析几何 第31练 双曲线的渐近线和离心率.docx

  • 上传人:a****
  • 文档编号:811062
  • 上传时间:2025-12-15
  • 格式:DOCX
  • 页数:8
  • 大小:83.53KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    考前三个月
    资源描述:

    1、第31练双曲线的渐近线和离心率题型一双曲线的渐近线问题例1(2022课标全国)已知双曲线C:1(a0,b0)的离心率为,则C的渐近线方程为_破题切入点根据双曲线的离心率求出a和b的比例关系,进而求出渐近线答案yx解析由e知,a2k,ck,k(0,),由b2c2a2k2,知bk.所以.即渐近线方程为yx.题型二双曲线的离心率问题例2已知O为坐标原点,双曲线1(a0,b0)的右焦点为F,以OF为直径作圆与双曲线的渐近线交于异于原点的两点A,B,若()0,则双曲线的离心率e为_破题切入点数形结合,画出合适图形,找出a,b间的关系答案解析如图,设OF的中点为T,由()0可知ATOF,又A在以OF为直径

    2、的圆上,A,又A在直线yx上,ab,e.题型三双曲线的渐近线与离心率综合问题例3已知A(1,2),B(1,2),动点P满足.若双曲线1(a0,b0)的渐近线与动点P的轨迹没有公共点,则双曲线离心率的取值范围是_破题切入点先由直接法确定点P的轨迹(为一个圆),再由渐近线与该轨迹无公共点得到不等关系,进一步列出关于离心率e的不等式进行求解答案(1,2)解析设P(x,y),由题设条件,得动点P的轨迹为(x1)(x1)(y2)(y2)0,即x2(y2)21,它是以(0,2)为圆心,1为半径的圆又双曲线1(a0,b0)的渐近线方程为yx,即bxay0,由题意,可得1,即1,所以e1,故1e1的条件,常用

    3、到数形结合(2)在求双曲线的渐近线方程时要掌握其简易求法由yx00,所以可以把标准方程1(a0,b0)中的“1”用“0”替换即可得出渐近线方程双曲线的离心率是描述双曲线“张口”大小的一个数据,由于,当e逐渐增大时,的值就逐渐增大,双曲线的“张口”就逐渐增大1已知双曲线1(a0,b0)以及双曲线1的渐近线将第一象限三等分,则双曲线1的离心率为_答案2或解析由题意,可知双曲线1的渐近线的倾斜角为30或60,则或.则e 或2.2已知双曲线C:1 (a0,b0)的左,右焦点分别为F1,F2,过F2作双曲线C的一条渐近线的垂线,垂足为H,若F2H的中点M在双曲线C上,则双曲线C的离心率为_答案解析取双曲

    4、线的渐近线yx,则过F2与渐近线垂直的直线方程为y(xc),可解得点H的坐标为,则F2H的中点M的坐标为,代入双曲线方程1可得1,整理得c22a2,即可得e.3已知双曲线1(a0,b0)的两条渐近线均和圆C:x2y26x50相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为_答案1解析双曲线1的渐近线方程为yx,圆C的标准方程为(x3)2y24,圆心为C(3,0)又渐近线方程与圆C相切,即直线bxay0与圆C相切,2,5b24a2.又1的右焦点F2(,0)为圆心C(3,0),a2b29.由得a25,b24.双曲线的标准方程为1.4已知双曲线1(a0,b0)的左,右焦点分别为F1(c,0),

    5、F2(c,0),若双曲线上存在点P使,则该双曲线的离心率的取值范围是_答案(1,1)解析根据正弦定理得,由,可得,即e,所以PF1ePF2.因为e1,所以PF1PF2,点P在双曲线的右支上又PF1PF2ePF2PF2PF2(e1)2a,解得PF2.因为PF2ca(不等式两边不能取等号,否则题中的分式中的分母为0,无意义),所以ca,即e1,即(e1)22,解得e1,所以e(1,1)5(2022湖北)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且F1PF2,则椭圆和双曲线的离心率的倒数之和的最大值为_答案解析设PF1r1,PF2r2(r1r2),F1F22c,椭圆长半轴长为a1

    6、,双曲线实半轴长为a2,椭圆、双曲线的离心率分别为e1,e2,由(2c)2rr2r1r2cos ,得4c2rrr1r2.由得所以.令m,当时,mmax,所以()max,即的最大值为.6(2022山东改编)已知ab0,椭圆C1的方程为1,双曲线C2的方程为1,C1与C2的离心率之积为,则C2的渐近线方程为_答案xy0解析由题意知e1,e2,e1e2.又a2b2c,ca2b2,ca2b2,1()4,即1()4,解得,.令0,解得bxay0,xy0.7若椭圆1(ab0)与双曲线1的离心率分别为e1,e2,则e1e2的取值范围为_答案(0,1)解析可知e1,e1,所以ee22e1e10e1e20,b0

    7、)的左焦点F作圆x2y2的切线,切点为E,延长FE交双曲线的右支于点P,若E为PF的中点,则双曲线的离心率为_答案解析设双曲线的右焦点为F,由于E为PF的中点,坐标原点O为FF的中点,所以EOPF,又EOPF,所以PFPF,且PF2a,故PF3a,根据勾股定理得FFa.所以双曲线的离心率为.9(2022浙江)设直线x3ym0(m0)与双曲线1(a0,b0)的两条渐近线分别交于点A,B.若点P(m,0)满足PAPB,则该双曲线的离心率是_答案解析双曲线1的渐近线方程为yx.由得A(,),由得B(,),所以AB的中点C坐标为(,)设直线l:x3ym0(m0),因为PAPB,所以PCl,所以kPC3

    8、,化简得a24b2.在双曲线中,c2a2b25b2,所以e.10(2022湖南)设F1,F2是双曲线C:1(a0,b0)的两个焦点,P是C上一点,若PF1PF26a,且PF1F2的最小内角为30,则双曲线C的离心率为_答案解析不妨设PF1PF2,则PF1PF22a,又PF1PF26a,PF14a,PF22a.又在PF1F2中,PF1F230,由正弦定理得,PF2F190,F1F22a,双曲线C的离心率e.11P(x0,y0)(x0a)是双曲线E:1(a0,b0)上一点,M,N分别是双曲线E的左,右顶点,直线PM,PN的斜率之积为.(1)求双曲线的离心率;(2)过双曲线E的右焦点且斜率为1的直线

    9、交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足,求的值解(1)点P(x0,y0)(x0a)在双曲线1上,有1.由题意有,可得a25b2,c2a2b26b2,则e.(2)联立得4x210cx35b20.设A(x1,y1),B(x2,y2)则设(x3,y3),即又C为双曲线上一点,即x5y5b2,有(x1x2)25(y1y2)25b2.化简得2(x5y)(x5y)2(x1x25y1y2)5b2.又A(x1,y1),B(x2,y2)在双曲线上,所以x5y5b2,x5y5b2.由(1)可知c26b2,由式又有x1x25y1y2x1x25(x1c)(x2c)4x1x25c(x1x2)5c21

    10、0b2.得240,解得0或4.12(2022江西)如图,已知双曲线C:y21(a0)的右焦点为F.点A,B分别在C的两条渐近线上,AFx轴,ABOB,BFOA(O为坐标原点)(1)求双曲线C的方程;(2)过C上一点P(x0,y0)(y00)的直线l:y0y1与直线AF相交于点M,与直线x相交于点N.证明:当点P在C上移动时,恒为定值,并求此定值解(1)设F(c,0),直线OB方程为yx,直线BF的方程为y(xc),解得B(,)又直线OA的方程为yx,则A(c,),kAB.又因为ABOB,所以()1,解得a23,故双曲线C的方程为y21.(2)由(1)知a,则直线l的方程为y0y1(y00),即y.因为c2,所以直线AF的方程为x2,所以直线l与AF的交点为M(2,);直线l与直线x的交点为N(,)则.因为P(x0,y0)是C上一点,则y1,代入上式得,即为定值

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题7 解析几何 第31练 双曲线的渐近线和离心率.docx
    链接地址:https://www.ketangku.com/wenku/file-811062.html
    相关资源 更多
  • 人教版小学数学五年级下册重点题型专项练习含答案(综合题).docx人教版小学数学五年级下册重点题型专项练习含答案(综合题).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(综合卷).docx人教版小学数学五年级下册重点题型专项练习含答案(综合卷).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(精练).docx人教版小学数学五年级下册重点题型专项练习含答案(精练).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(突破训练).docx人教版小学数学五年级下册重点题型专项练习含答案(突破训练).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(研优卷).docx人教版小学数学五年级下册重点题型专项练习含答案(研优卷).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(最新).docx人教版小学数学五年级下册重点题型专项练习含答案(最新).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(新).docx人教版小学数学五年级下册重点题型专项练习含答案(新).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(巩固).docx人教版小学数学五年级下册重点题型专项练习含答案(巩固).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(实用).docx人教版小学数学五年级下册重点题型专项练习含答案(实用).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(完整版).docx人教版小学数学五年级下册重点题型专项练习含答案(完整版).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(夺分金卷).docx人教版小学数学五年级下册重点题型专项练习含答案(夺分金卷).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(培优).docx人教版小学数学五年级下册重点题型专项练习含答案(培优).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(培优B卷).docx人教版小学数学五年级下册重点题型专项练习含答案(培优B卷).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(培优A卷).docx人教版小学数学五年级下册重点题型专项练习含答案(培优A卷).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(名师推荐).docx人教版小学数学五年级下册重点题型专项练习含答案(名师推荐).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(典型题).docx人教版小学数学五年级下册重点题型专项练习含答案(典型题).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(B卷).docx人教版小学数学五年级下册重点题型专项练习含答案(B卷).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案(A卷).docx人教版小学数学五年级下册重点题型专项练习含答案(A卷).docx
  • 人教版小学数学五年级下册重点题型专项练习含答案解析.docx人教版小学数学五年级下册重点题型专项练习含答案解析.docx
  • 人教版小学数学五年级下册重点题型专项练习含答案【黄金题型】.docx人教版小学数学五年级下册重点题型专项练习含答案【黄金题型】.docx
  • 人教版小学数学五年级下册重点题型专项练习含答案【达标题】.docx人教版小学数学五年级下册重点题型专项练习含答案【达标题】.docx
  • 人教版小学数学五年级下册重点题型专项练习含答案【轻巧夺冠】.docx人教版小学数学五年级下册重点题型专项练习含答案【轻巧夺冠】.docx
  • 人教版小学数学五年级下册重点题型专项练习含答案【能力提升】.docx人教版小学数学五年级下册重点题型专项练习含答案【能力提升】.docx
  • 人教版小学数学五年级下册重点题型专项练习含答案【考试直接用】.docx人教版小学数学五年级下册重点题型专项练习含答案【考试直接用】.docx
  • 人教版小学数学五年级下册重点题型专项练习含答案【综合题】.docx人教版小学数学五年级下册重点题型专项练习含答案【综合题】.docx
  • 人教版小学数学五年级下册重点题型专项练习含答案【综合卷】.docx人教版小学数学五年级下册重点题型专项练习含答案【综合卷】.docx
  • 人教版小学数学五年级下册重点题型专项练习含答案【突破训练】.docx人教版小学数学五年级下册重点题型专项练习含答案【突破训练】.docx
  • 人教版小学数学五年级下册重点题型专项练习含答案【研优卷】.docx人教版小学数学五年级下册重点题型专项练习含答案【研优卷】.docx
  • 人教版小学数学五年级下册重点题型专项练习含答案【满分必刷】.docx人教版小学数学五年级下册重点题型专项练习含答案【满分必刷】.docx
  • 相关搜索
    关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1