分享
分享赚钱 收藏 举报 版权申诉 / 7

类型【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题三 函数与导数 第15练 函数的极值与最值.docx

  • 上传人:a****
  • 文档编号:811063
  • 上传时间:2025-12-15
  • 格式:DOCX
  • 页数:7
  • 大小:31.88KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    考前三个月
    资源描述:

    1、第15练函数的极值与最值题型一函数极值与极值点的判断、求解问题例1函数y2x的极大值是_破题切入点根据函数极值的求解步骤,先求导函数,判断单调性,最后求出极值答案3解析y2,令y0,得x1.当x0;当x1时,y0时,f(x)0,f(x)2,当且仅当x1时取“”当x0时,f(x)0,f(x)2,当且仅当x1时取“”故f(x)的值域为2,2,从而f(x1).依题意有g(x)min,x1,e,g(x),当a1时,g(x)0,函数g(x)在1,e上单调递增,其最小值为g(1)a1,符合题意;当1ae时,函数g(x)在1,a上单调递减,在(a,e上单调递增,所以函数g(x)的最小值为g(a)ln a1,

    2、由ln a1,得0a,从而知当1,不符合题意综合所述,a的取值范围为(,题型四函数的最值问题例4已知函数f(x)x2ln x.(1)求函数f(x)在区间1,e上的最大值、最小值;(2)求证:在区间(1,)上,函数f(x)的图象在函数g(x)x3的图象的下方破题切入点(1)f(x)在闭区间1,e上的最大值、最小值要么在端点处取得,要么在极值点处取得所以首先要研究f(x)在1,e上的单调性(2)f(x)的图象在函数g(x)x3的图象的下方,即g(x)f(x)在(1,)上恒大于0.(1)解当x1,e时,f(x)x0,所以f(x)在区间1,e上为增函数所以当x1时,f(x)取得最小值;当xe时,f(x

    3、)取得最大值e21.(2)证明设h(x)g(x)f(x)x3x2ln x,x(1,),则h(x)2x2x.当x(1,)时,h(x)0,h(x)在区间(1,)上为增函数,所以h(x)h(1)0.所以对于x(1,),g(x)f(x)成立,即f(x)的图象在g(x)的图象的下方总结提高(1)准确把握函数极值与最值的概念,极值是函数的局部性质,在所给的区间上极大值和极小值不一定唯一,且极大值不一定大于极小值,而最值是函数的整体性质,在所给的区间上最大值一定大于最小值,且最大值和最小值都是唯一的(2)函数在x0处取得极值,有f(x0)0,而f(x0)0不一定有f(x)在x0处取得极值(3)两者之间的联系

    4、,求最值时先要求出极值然后和区间端点函数值相比较而得出最大值和最小值1(2022课标全国改编)函数f(x)在xx0处导数存在若p:f(x0)0;q:xx0是f(x)的极值点,则p是q的_条件答案必要不充分解析当f(x0)0时,xx0不一定是f(x)的极值点,比如,yx3在x0时,f(0)0,但在x0的左右两侧f(x)的符号相同,因而x0不是yx3的极值点由极值的定义知,xx0是f(x)的极值点必有f(x0)0.综上知,p是q的必要条件,但不是充分条件2(2022辽宁改编)设函数f(x)满足x2f(x)2xf(x),f(2),则x0时,f(x)极值情况为_答案无极大值也无极小值解析由x2f(x)

    5、2xf(x),得f(x),令g(x)ex2x2f(x),x0,则g(x)ex2x2f(x)4xf(x)ex2.令g(x)0,得x2.当x2时,g(x)0;当0x2时,g(x)0,g(x)在x2时有最小值g(2)e28f(2)0,从而当x0时,f(x)0,则f(x)在(0,)上是增函数,函数f(x)无极大值,也无极小值3已知x3是函数f(x)aln xx210x的一个极值点,则实数a_.答案12解析f(x)2x10,由f(3)6100,得a12,经检验满足4设变量a,b满足约束条件z|a3b|的最大值为m,则函数f(x)x3x22x2的极小值为_答案解析据线性规划可得(a3b)min8,(a3b

    6、)max2,故2|a3b|8,即m8,此时f(x)x2x2(x2)(x1),可得当x1时f(x)0,当1x2时f(x)0,故当x2时函数取得极小值,即f(x)极小值f(2).5已知函数f(x)x32bx2cx1有两个极值点x1,x2,且x12,1,x21,2,则f(1)的取值范围是_答案3,12解析方法一由于f(x)3x24bxc,据题意方程3x24bxc0有两个根x1,x2,且x12,1,x21,2,令g(x)3x24bxc,结合二次函数图象可得只需此即为关于点(b,c)的线性约束条件,作出其对应平面区域,f(1)2bc,问题转化为在上述线性约束条件下确定目标函数f(1)2bc的最值问题,由

    7、线性规划易知3f(1)12.方法二方程3x24bxc0有两个根x1,x2,且x12,1,x21,2的条件也可以通过二分法处理,即只需g(2)g(1)0,g(2)g(1)0即可,利用同样的方法也可解答6已知函数f(x)的导数为f(x)x2x,则当x_时,函数f(x)取得极大值答案0解析当x1时,f(x)0;当0x1时,f(x)0.所以当x0时,函数f(x)取得极大值7函数f(x)x33axa在(0,1)内有最小值,则a的取值范围是_答案0a1解析y3x23a,令y0,可得ax2.又x(0,1),0a2或a0,解得a2或a1.9若函数f(x)x24x3ln x在t,t1上不单调,则t的取值范围是_

    8、答案0t1或2t3解析对f(x)求导,得f(x)x4.由f(x)0得函数f(x)的两个极值点为1,3,则只要这两个极值点有一个在区间(t,t1)内,函数f(x)在区间t,t1上就不单调,所以t1t1或t3t1,解得0t1或2t0时,(xk)f(x)x10,求k的最大值解(1)f(x)的定义域为(,),f(x)exa.若a0,则f(x)0,所以f(x)在(,)上单调递增若a0,则当x(,ln a)时,f(x)0.所以,f(x)在(,ln a)上单调递减,在(ln a,)上单调递增(2)由于a1时,(xk)f(x)x1(xk)(ex1)x1.故当x0时,(xk)f(x)x10等价于k0)令g(x)

    9、x,则g(x)1.由(1)知,函数h(x)exx2在(0,)上单调递增,又h(1)e30.所以h(x)在(0,)上存在唯一零点故g(x)在(0,)上存在唯一零点设此零点为,则(1,2)当x(0,)时,g(x)0,所以g(x)在(0,)上的最小值为g()又由g()0,得e2,所以g()1(2,3)由于式等价于k0),xR.(1)求f(x)的单调区间和极值;(2)若对于任意的x1(2,),都存在x2(1,),使得f(x1)f(x2)1,求a的取值范围解(1)由已知,有f(x)2x2ax2(a0)令f(x)0,解得x0或x.当x变化时,f(x),f(x)的变化情况如下表:x(,0)0(0,)(,)f

    10、(x)00f(x)0所以f(x)的单调递增区间是(0,);单调递减区间是(,0),(,)当x0时,f(x)有极小值,且极小值f(0)0;当x时,f(x)有极大值,且极大值f().(2)由f(0)f()0及(1)知,当x(0,)时,f(x)0;当x(,)时,f(x)2,即0a时,由f()0可知,0A,而0B,所以A不是B的子集当12,即a时,有f(2)0,且此时f(x)在(2,)上单调递减,故A(,f(2),因而A(,0);由f(1)0,有f(x)在(1,)上的取值范围包含(,0),则(,0)B.所以AB.当时,有f(1)0,所以当x(0,2)时,f(x)0,函数yf(x)单调递增所以f(x)的单调递减区间为(0,2),单调递增区间为(2,)(2)由(1)知,k0时,函数f(x)在(0,2)内单调递减,故f(x)在(0,2)内不存在极值点;当k0时,设函数g(x)exkx,x0,)因为g(x)exkexeln k,当00,yg(x)单调递增故f(x)在(0,2)内不存在两个极值点当k1时,得x(0,ln k)时,g(x)0,函数yg(x)单调递增所以函数yg(x)的最小值为g(ln k)k(1ln k)函数f(x)在(0,2)内存在两个极值点,当且仅当解得ek.综上所述,函数f(x)在(0,2)内存在两个极值点时,k的取值范围为(e,)

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题三 函数与导数 第15练 函数的极值与最值.docx
    链接地址:https://www.ketangku.com/wenku/file-811063.html
    相关资源 更多
  • 人教版数学一年级(上册)期末综合素养提升题答案免费.docx人教版数学一年级(上册)期末综合素养提升题答案免费.docx
  • 人教版数学一年级(上册)期末综合素养提升题有精品答案.docx人教版数学一年级(上册)期末综合素养提升题有精品答案.docx
  • 人教版数学一年级(上册)期末综合素养提升题最新.docx人教版数学一年级(上册)期末综合素养提升题最新.docx
  • 人教版数学一年级(上册)期末综合素养提升题必考题.docx人教版数学一年级(上册)期末综合素养提升题必考题.docx
  • 人教版数学一年级(上册)期末综合素养提升题带答案(预热题).docx人教版数学一年级(上册)期末综合素养提升题带答案(预热题).docx
  • 人教版数学一年级(上册)期末综合素养提升题带答案(综合卷).docx人教版数学一年级(上册)期末综合素养提升题带答案(综合卷).docx
  • 人教版数学一年级(上册)期末综合素养提升题带答案(模拟题).docx人教版数学一年级(上册)期末综合素养提升题带答案(模拟题).docx
  • 人教版数学一年级(上册)期末综合素养提升题带答案(基础题).docx人教版数学一年级(上册)期末综合素养提升题带答案(基础题).docx
  • 人教版数学一年级(上册)期末综合素养提升题带答案(培优).docx人教版数学一年级(上册)期末综合素养提升题带答案(培优).docx
  • 人教版数学一年级(上册)期末综合素养提升题带下载答案.docx人教版数学一年级(上册)期末综合素养提升题带下载答案.docx
  • 人教版数学一年级(上册)期末综合素养提升题完美版.docx人教版数学一年级(上册)期末综合素养提升题完美版.docx
  • 人教版数学一年级(上册)期末综合素养提升题完整.docx人教版数学一年级(上册)期末综合素养提升题完整.docx
  • 人教版数学一年级(上册)期末综合素养提升题学生专用.docx人教版数学一年级(上册)期末综合素养提升题学生专用.docx
  • 人教版数学一年级(上册)期末综合素养提升题含解析答案.docx人教版数学一年级(上册)期末综合素养提升题含解析答案.docx
  • 人教版数学一年级(上册)期末综合素养提升题含答案(达标题).docx人教版数学一年级(上册)期末综合素养提升题含答案(达标题).docx
  • 人教版数学一年级(上册)期末综合素养提升题含答案(能力提升).docx人教版数学一年级(上册)期末综合素养提升题含答案(能力提升).docx
  • 人教版数学一年级(上册)期末综合素养提升题含答案(考试直接用).docx人教版数学一年级(上册)期末综合素养提升题含答案(考试直接用).docx
  • 人教版数学一年级(上册)期末综合素养提升题含答案(研优卷).docx人教版数学一年级(上册)期末综合素养提升题含答案(研优卷).docx
  • 人教版数学一年级(上册)期末综合素养提升题含答案(名师推荐).docx人教版数学一年级(上册)期末综合素养提升题含答案(名师推荐).docx
  • 人教版数学一年级(上册)期末综合素养提升题含答案解析.docx人教版数学一年级(上册)期末综合素养提升题含答案解析.docx
  • 人教版数学一年级(上册)期末综合素养提升题含答案下载.docx人教版数学一年级(上册)期末综合素养提升题含答案下载.docx
  • 人教版数学一年级(上册)期末综合素养提升题含答案【轻巧夺冠】.docx人教版数学一年级(上册)期末综合素养提升题含答案【轻巧夺冠】.docx
  • 人教版数学一年级(上册)期末综合素养提升题含答案【考试直接用】.docx人教版数学一年级(上册)期末综合素养提升题含答案【考试直接用】.docx
  • 人教版数学一年级(上册)期末综合素养提升题含答案【满分必刷】.docx人教版数学一年级(上册)期末综合素养提升题含答案【满分必刷】.docx
  • 人教版数学一年级(上册)期末综合素养提升题含答案【巩固】.docx人教版数学一年级(上册)期末综合素养提升题含答案【巩固】.docx
  • 人教版数学一年级(上册)期末综合素养提升题含答案【基础题】.docx人教版数学一年级(上册)期末综合素养提升题含答案【基础题】.docx
  • 人教版数学一年级(上册)期末综合素养提升题含答案【培优】.docx人教版数学一年级(上册)期末综合素养提升题含答案【培优】.docx
  • 人教版数学一年级(上册)期末综合素养提升题含答案【培优a卷】.docx人教版数学一年级(上册)期末综合素养提升题含答案【培优a卷】.docx
  • 人教版数学一年级(上册)期末综合素养提升题含答案【名师推荐】.docx人教版数学一年级(上册)期末综合素养提升题含答案【名师推荐】.docx
  • 相关搜索
    关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1