分享
分享赚钱 收藏 举报 版权申诉 / 22

类型专题03 二次函数与实际应用(销售利润问题)-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版).docx

  • 上传人:a****
  • 文档编号:828029
  • 上传时间:2025-12-15
  • 格式:DOCX
  • 页数:22
  • 大小:759.38KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题03 二次函数与实际应用销售利润问题-2022年中考数学之二次函数重点题型专题全国通用版解析版 专题 03 二次 函数 实际 应用 销售 利润 问题 2022 年中 数学 重点 题型 全国
    资源描述:

    1、专题03 二次函数与实际应用(销售利润问题)1(2021辽宁丹东中考真题)某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本(1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(不需要求自变量取值范围)(2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?(3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?【答案】(1);(2)70元

    2、;(3)80元【分析】(1)明确题意,找到等量关系求出函数关系式即可;(2)根据题意,按照等量关系“销售量(售价成本)”列出方程,求解即可得到该商品此时的销售单价;(3)设每月所获利润为,按照等量关系列出二次函数,并根据二次函数的性质求得最值即可【详解】解:(1)依题意得,与的函数关系式为;(2)依题意得,即,解得:,当该商品每月销售利润为,为使顾客获得更多实惠,销售单价应定为元;(3)设每月总利润为,依题意得,此图象开口向下当时, 有最大值为:(元),当销售单价为元时利润最大,最大利润为元,故为了每月所获利润最大,该商品销售单价应定为元【点睛】本题考查了二次函数在实际生活中的应用,根据题意找

    3、到等量关系并掌握二次函数求最值的方法是解题的关键2(2021辽宁锦州中考真题)某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(t)之间的关系为m500.2x,销售价y(万元/t)与原料的质量x(t)之间的关系如图所示(1)求y与x之间的函数关系式;(2)设销售收入为P(万元),求P与x之间的函数关系式;(3)原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润销售收入总支出)【答案】(1);(2);(3)原料的质量为24吨时,所获销售利润最大,最大销售利润是万元【分析】(1)利用待定系

    4、数法求函数关系式;(2)根据销售收入销售价销售量列出函数关系式;(3)设销售总利润为W,根据销售利润销售收入原料成本加工费列出函数关系式,然后根据二次函数的性质分析其最值【详解】解:(1)设y与x之间的函数关系式为,将(20,15),(30,12.5)代入,可得:,解得:,y与x之间的函数关系式为;(2)设销售收入为P(万元),P与x之间的函数关系式为;(3)设销售总利润为W,整理,可得:,0,当时,W有最大值为,原料的质量为24吨时,所获销售利润最大,最大销售利润是万元【点睛】本题考查了二次函数的实际应用,涉及了数形结合的数学思想,熟练掌握待定系数法求解析式是解决本题的关键3(2021辽宁盘

    5、锦中考真题)某工厂生产并销售A,B两种型号车床共14台,生产并销售1台A型车床可以获利10万元;如果生产并销售不超过4台B型车床,则每台B型车床可以获利17万元,如果超出4台B型车床,则每超出1台,每台B型车床获利将均减少1万元设生产并销售B型车床台(1)当时,完成以下两个问题:请补全下面的表格:A型B型车床数量/台_每台车床获利/万元10_若生产并销售B型车床比生产并销售A型车床获得的利润多70万元,问:生产并销售B型车床多少台?(2)当014时,设生产并销售A,B两种型号车床获得的总利润为W万元,如何分配生产并销售A,B两种车床的数量,使获得的总利润W最大?并求出最大利润【答案】(1),;

    6、10台;(2)分配产销A型车床9台、B型车床5台;或产销A型车床8台、B型车床6台,此时可获得总利润最大值170万元【分析】(1)由题意可知,生产并销售B型车床x台时,生产A型车床(14-x)台,当时,每台就要比17万元少()万元,所以每台获利,也就是()万元;根据题意可得根据题意:然后解方程即可;(2)当04时,W,当414时,W,分别求出两个范围内的最大值即可得到答案.【详解】解:(1)当时,每台就要比17万元少()万元所以每台获利,也就是()万元补全表格如下面:A型B型车床数量/台每台车床获利/万元10此时,由A型获得的利润是10()万元,由B型可获得利润为万元,根据题意:, ,014,

    7、 ,即应产销B型车床10台;(2)当04时,当04A型B型车床数量/台每台车床获利/万元1017利润此时,W,该函数值随着的增大而增大,当取最大值4时,W最大1168(万元);当414时,当414A型B型车床数量/台每台车床获利/万元10利润则W,当或时(均满足条件414),W达最大值W最大2170(万元),W最大2 W最大1, 应分配产销A型车床9台、B型车床5台;或产销A型车床8台、B型车床6台,此时可获得总利润最大值170万元【点睛】本题主要考查了一元二次方程的实际应用,一次函数和二次函数的实际应用,解题的关键在于能够根据题意列出合适的方程或函数关系式求解.4(2021湖北荆门中考真题)

    8、某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,下表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的三组对应值数据x407090y1809030W360045002100(1)求y关于x的函数解析式(不要求写出自变量的取值范围);(2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;(3)因疫情期间,该商品进价提高了m(元/件)(),公司为回馈消费者,规定该商品售价x不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销

    9、售最大利润是4050元,求m的值【答案】(1);(2)售价60元时,周销售利润最大为4800元;(3)【分析】(1)依题意设y=kx+b,解方程组即可得到结论;(2)根据题意得,再由表格数据求出,得到,根据二次函数的顶点式,求出最值即可; (3)根据题意得,由于对称轴是直线,根据二次函数的性质即可得到结论【详解】解:(1)设,由题意有,解得,所以y关于x的函数解析式为;(2)由(1),又由表可得:,所以售价时,周销售利润W最大,最大利润为4800;(3)由题意,其对称轴,时上述函数单调递增,所以只有时周销售利润最大,【点睛】本题考查了二次函数在实际生活中的应用,重点是掌握求最值的问题注意:数学

    10、应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用二次函数求最值5(2021四川南充中考真题)超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元(1)求苹果的进价(2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式(3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完据统计,销售单价z(元/千克)与一天销售数量x(千克)的关系为

    11、在(2)的条件下,要使超市销售苹果利润w(元)最大,求一天购进苹果数量(利润销售收入购进支出)【答案】(1)苹果的进价为10元/千克;(2);(3)要使超市销售苹果利润w最大,一天购进苹果数量为200千克【分析】(1)设苹果的进价为x元/千克,根据等量关系,列出分式方程,即可求解;(2)分两种情况:当x100时, 当x100时,分别列出函数解析式,即可;(3)分两种情况:若x100时,若x100时,分别求出w关于x的函数解析式,根据二次函数的性质,即可求解【详解】解:(1)设苹果的进价为x元/千克,由题意得:,解得:x=10,经检验:x=10是方程的解,且符合题意,答:苹果的进价为10元/千克

    12、;(2)当x100时,y=10x,当x100时,y=10100+(10-2)(x-100)=8x+200,;(3)若x100时,w=zx-y=,当x=100时,w最大=100,若x100时,w=zx-y=,当x=200时,w最大=200,综上所述:当x=200时,超市销售苹果利润w最大,答:要使超市销售苹果利润w最大,一天购进苹果数量为200千克【点睛】本题主要考查分式方程、一次函数、二次函数的实际应用,根据数量关系,列出函数解析式和分式方程,是解题的关键6(2021湖北黄冈中考真题)红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元/件一个月可售出5万件;月销售单价每涨价1元,

    13、月销售量就减少万件其中月销售单价不低于成本设月销售单价为x(单位:元/件),月销售量为y(单位:万件)(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a元已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a的值【答案】(1);(2)当月销售单价是70元/件时,月销售利润最大,最大利润是90万元;(3)4【分析】(1)分和两种情况,根据“月销售单价每涨价1元,月销售量就减少万件”即可得函数关系式,再根据求出

    14、的取值范围;(2)在(1)的基础上,根据“月利润(月销售单价成本价)月销售量”建立函数关系式,分别利用一次函数和二次函数的性质求解即可得;(3)设该产品的捐款当月的月销售利润为万元,先根据捐款当月的月销售单价、月销售最大利润可得,再根据“月利润(月销售单价成本价)月销售量”建立函数关系式,然后利用二次函数的性质即可得【详解】解:(1)由题意,当时,当时,解得,综上,;(2)设该产品的月销售利润为万元,当时,由一次函数的性质可知,在内,随的增大而增大,则当时,取得最大值,最大值为;当时,由二次函数的性质可知,当时,取得最大值,最大值为90,因为,所以当月销售单价是70元/件时,月销售利润最大,最

    15、大利润是90万元;(3)捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元(大于50万元),设该产品捐款当月的月销售利润为万元,由题意得:,整理得:,在内,随的增大而增大,则当时,取得最大值,最大值为,因此有,解得【点睛】本题考查了二次函数与一次函数的实际应用,正确建立函数关系式是解题关键7(2021浙江中考真题)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有两个景点,售票处出示的三种购票方式如表所示:购票方式甲乙丙可游玩景点和门票价格100元

    16、/人80元/人160元/人据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票若丙种门票价格下降10元,求景区六月份的门票总收入;问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?【答案】(1)20%;(2)798万元,当丙种门票价格降低24元时,景区六月份的门票总收入有最大值,为817.6万元【分析】(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为,则四月份的游客为人,五月份的游客为人,再列方

    17、程,解方程可得答案;(2)分别计算购买甲,乙,丙种门票的人数,再计算门票收入即可得到答案;设丙种门票价格降低元,景区六月份的门票总收入为万元,再列出与的二次函数关系式,利用二次函数的性质求解最大利润即可得到答案【详解】解:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为,由题意,得 解这个方程,得(舍去)答:四月和五月这两个月中,该景区游客人数平均每月增长20%(2)由题意,丙种门票价格下降10元,得:购买丙种门票的人数增加:(万人),购买甲种门票的人数为:(万人),购买乙种门票的人数为:(万人),所以:门票收入问;(万元)答:景区六月份的门票总收入为798万元设丙种门票价格降低元

    18、,景区六月份的门票总收入为万元,由题意,得化简,得, ,当时,取最大值,为817.6万元 答:当丙种门票价格降低24元时,景区六月份的门票总收入有最大值,为817.6万元【点睛】本题考查的是一元二次方程的应用,二次函数的实际应用,掌握利用二次函数的性质求解利润的最大值是解题的关键8(2021湖北武汉中考真题)在“乡村振兴”行动中,某村办企业以,两种农作物为原料开发了一种有机产品,原料的单价是原料单价的1.5倍,若用900元收购原料会比用900元收购原料少生产该产品每盒需要原料和原料,每盒还需其他成本9元市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒

    19、 (1)求每盒产品的成本(成本原料费其他成本);(2)设每盒产品的售价是元(是整数),每天的利润是元,求关于的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过元(是大于60的常数,且是整数),直接写出每天的最大利润【答案】(1)每盒产品的成本为30元(2);(3)当时,每天的最大利润为16000元;当时,每天的最大利润为元【分析】(1)设原料单价为元,则原料单价为元然后再根据“用900元收购原料会比用900元收购原料少”列分式方程求解即可;(2)直接根据“总利润=单件利润销售数量”列出解析式即可;(3)先确定的对称轴和开口方向,然后再根据二次函数的性质求最值即可【详解】解

    20、:(1)设原料单价为元,则原料单价为元依题意,得解得,经检验,是原方程的根每盒产品的成本为:(元)答:每盒产品的成本为30元(2);(3)抛物线的对称轴为=70,开口向下当时,a=70时有最大利润,此时w=16000,即每天的最大利润为16000元;当时,每天的最大利润为元【点睛】本题主要考查了分式方程的应用、二次函数的应用等知识点,正确理解题意、列出分式方程和函数解析式成为解答本题的关键9(20212022湖北黄石八中九年级期中)在“乡村振兴”行动中,某村办企业以A,B两种农作物为原料,开发了一种有机产品A原料的单价是B原料单价的1.5倍若用900元收购A原料会比用900元收购B原料少100

    21、kg,生产该产品每盒需要A原料2kg和B原料4kg,每盒还需其它成本9元市场调查发现:该产品售价为每盒40元时,每天可卖出150盒如果每盒的售价每涨1元(售价每盒不能高于45元),那么每天少卖10盒设每盒涨价x元(x为非负整数),每天销售y盒(1)求该产品每盒的成本(成本原料费+其它成本);(2)求y与x的函数关系式及自变量x的取值范围;(3)如何定价才能使每天的利润最大且每天销量较大?每天的最大利润是多少?【答案】(1)30;(2),(x为非负整数);(3)42或43,【分析】(1)根据题意列方程先求出两种原料的单价,再根据成本原料费其它成本计算每盒产品的成本即可;(2)根据每盒售价每涨1元

    22、,则每天少卖10盒可直接列出每天销售y盒与每盒涨价x元之间的函数关系式,再根据售价每盒不能高于45元且x为非负整数,可得出x的取值范围;(3)根据每天的利润等于一盒的利润乘以每天卖的总盒数列出函数关系式,再利用函数的性质求最值即可【详解】解:(1)设原料单价为元,则原料单价为元,根据题意,得,解得: ,每盒产品的成本为:(元),答:每盒产品的成本为30元;(2)每盒的售价每涨1元,那么每天少卖10盒y与x的函数关系式为:,又售价每盒不能高于45元,x为非负整数,自变量x的取值范围为:(x为非负整数);(3)设每天的利润为w元,则有:,w是关于x的一元二次方程,x为非负整数当时,取得最大值为,每

    23、盒定价为:42或43(元),答:定价为42.或43元时才能使每天的利润最大且每天销量较大,每天的最大利润是1560元【点睛】本题考查了二次函数的性质和分式方程,解题的关键是熟练应用二次函数求最值10(20212022湖北谷城九年级期中)为了落实国务院“三农”优惠政策,最近,市委市政府出台了一系列优惠措施,使农民收入大幅度增加某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:设这种产品每天的销售利润为y(元)(1)求y与x之间的函数关系式(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如

    24、果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?【答案】(1);(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元;(3)25元【分析】(1)根据销售额=销售量销售价单x,列出函数关系式(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值(3)把y=150代入(2)的函数关系式中,解一元二次方程求x,根据x的取值范围求x的值【详解】解:(1)y与的函数关系式为:(2),当时,有最大值.最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.当时,可得方程.解

    25、得,.,不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.【点睛】本题是函数思想的具体运用,构建二次函数关系式,利用二次函数的最大值确定销售的最大利润11(2021湖南郴州中考真题)某商店从厂家以每件2元的价格购进一批商品,在市场试销中发现,此商品的月销售量(单位:万件)与销售单价(单位:元)之间有如下表所示关系:4.05.05.56.57.58.06.05.03.01.0(1)根据表中的数据,在图中描出实数对所对应的点,并画出关于的函数图象;(2)根据画出的函数图象,求出关于的函数表达式;(3)设经营此商品的月销售利润为(单位:万元)写出关于的函数表达式

    26、;该商店计划从这批商品获得的月销售利润为10万元(不计其它成本),若物价局限定商品的销售单价不得超过进价的200%,则此时的销售单价应定为多少元?【答案】(1)图象见详解;(2);(3);销售单价应定为3元【分析】(1)由题意可直接进行作图;(2)由图象可得y与x满足一次函数的关系,所以设其关系式为,然后任意代入表格中的两组数据进行求解即可;(3)由题意易得,然后由(2)可进行求解;由及题意可得,然后求解,进而根据销售单价不得超过进价的200可求解【详解】解:(1)y关于x的函数图象如图所示:(2)由(1)可设y与x的函数关系式为,则由表格可把代入得:,解得:,y与x的函数关系式为;(3)由(

    27、2)及题意可得:;关于的函数表达式为;由题意得:,即,解得:,;答:此时的销售单价应定为3元【点睛】本题主要考查二次函数与一次函数的应用,熟练掌握二次函数与一次函数的应用是解题的关键12(2021湖北天门中考真题)去年“抗疫”期间,某生产消毒液厂家响应政府号召,将成本价为6元/件的简装消毒液低价销售为此当地政府决定给予其销售的这种消毒液按a元/件进行补贴,设某月销售价为x元/件,a与x之间满足关系式:,下表是某4个月的销售记录每月销售量(万件)与该月销售价x(元/件)之间成一次函数关系月份二月三月四月五月销售价x(元件)677.68.5该月销售量y(万件)3020145(1)求y与x的函数关系

    28、式;(2)当销售价为8元/件时,政府该月应付给厂家补贴多少万元?(3)当销售价x定为多少时,该月纯收入最大?(纯收入=销售总金额-成本+政府当月补贴)【答案】(1);(2)4万元;(3)当销售价定为7元/件时,该月纯收入最大【分析】(1)利用待定系数法即可得;(2)将代入求出的值,代入与的函数关系式求出该月的销售量,再利用乘以该月的销售量即可得;(3)设该月纯收入为万元,先根据纯收入的计算公式求出与之间的函数关系式,再利用二次函数的性质求解即可得【详解】解:(1)设与的函数关系式为,将点代入得:,解得,则与的函数关系式为;(2)当时,则(万元),答:政府该月应付给厂家补贴4万元;(3)设该月纯

    29、收入为万元,由题意得:,整理得:,由二次函数的性质可知,在内,当时,取得最大值,最大值为32,答:当销售价定为7元/件时,该月纯收入最大【点睛】本题考查了一次函数和二次函数的实际应用,正确建立函数关系式是解题关键12(20212022安徽合肥市九年级月考)合肥市某水产养殖户进行小龙虾养殖已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价(元/千克)与时间第(天)之间的函数关系为:,日销售量(千克)与时间第(天)之间的函数关系如图所示:(1)哪一天的日销售利润最大?最大利润是多少?(2)该养殖户有多少天日销售利润不低于2400元?(3)在实际销售的前40天中,该养殖户决定每销售1

    30、千克小龙虾,就捐赠元给村里的特困户在这前40天中,每天扣除捐赠后的日销售利润随时间的增大而增大,求的取值范围【答案】(1)第30天的日销售利润最大,最大利润为2450元;(2)21天;(3)【分析】(1)用待定系数法先求得函数解析式,设日销售利润为,分和两种情况,根据总利润=每千克利润销售量,列出函数表达式,结合二次函数的性质分别求得最值即可判断;(2)求出时对应的值,结合函数性质就可得出答案;(3)根据题意列出函数表达式,确定开口方向和对称轴,由且销售利润随时间的增大而增大,结合二次函数性质即可得到答案【详解】解:设函数的表达式为:,将代入得:,解得:,设日销售利润为元,则,当时,当时,当时

    31、,当时,第30天的日销售利润最大,最大利润为2450元(2)当时,令,即,解得:,对称轴,当时,日销售利润不低于2400元但当时,的取值范围是所以共有21天销售利润不低于2400元(3)设日销售利润为,根据题意得:,该函数的对称轴为,且 又随的增大而增大,解得:又【点睛】本题考查待定系数法求一次函数的解析式,二次函数的图象性质,二次函数的最值以及在实际销售中的应用,牢记相关的知识点是解题关键13(2021江苏扬州中考真题)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出如果每辆汽车的月租费每增加5

    32、0元,那么将少租出1辆汽车另外,公司为每辆租出的汽车支付月维护费200元乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元说明:汽车数量为整数;月利润=月租车费-月维护费;两公司月利润差=月利润较高公司的利润-月利润较低公司的利润在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是_元;当每个公司租出的汽车为_辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;(3)甲公司热心公益事业,每租出1辆汽车捐出a元给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当

    33、两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围【答案】(1)48000,37;(2)33150元;(3)【分析】(1)用甲公司未租出的汽车数量算出每辆车的租金,再乘以10,减去维护费用可得甲公司的月利润;设每个公司租出的汽车为x辆,根据月利润相等得到方程,解之即可得到结果;(2)设两公司的月利润分别为y甲,y乙,月利润差为y,同(1)可得y甲和y乙的表达式,再分甲公司的利润大于乙公司和甲公司的利润小于乙公司两种情况,列出y关于x的表达式,根据二次函数的性质,结合x的范围求出最值,再比较即可;(3)根据题意得到利润差为,得到对称轴,再根据两公司租出的汽车均

    34、为17辆,结合x为整数可得关于a的不等式,即可求出a的范围【详解】解:(1)=48000元,当每个公司租出的汽车为10辆时,甲公司的月利润是48000元;设每个公司租出的汽车为x辆,由题意可得:,解得:x=37或x=-1(舍),当每个公司租出的汽车为37辆时,两公司的月利润相等;(2)设两公司的月利润分别为y甲,y乙,月利润差为y,则y甲=,y乙=,当甲公司的利润大于乙公司时,0x37,y=y甲-y乙=,当x=18时,利润差最大,且为18050元;当乙公司的利润大于甲公司时,37x50,y=y乙-y甲=,对称轴为直线x=18,当x=50时,利润差最大,且为33150元;综上:两公司月利润差的最大值为33150元;(3)捐款后甲公司剩余的月利润仍高于乙公司月利润,则利润差为=,对称轴为直线x=,x只能取整数,且当两公司租出的汽车均为17辆时,月利润之差最大,解得:【点睛】本题考查了二次函数的实际应用,二次函数的图像和性质,解题时要读懂题意,列出二次函数关系式,尤其(3)中要根据x为整数得到a的不等式

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题03 二次函数与实际应用(销售利润问题)-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-828029.html
    相关资源 更多
  • 人教版地理八年级下教案:第七章第一节 自然特征与农业.docx人教版地理八年级下教案:第七章第一节 自然特征与农业.docx
  • 人教版地理八年级下教案:第七章第一节 自然特征与农业.docx人教版地理八年级下教案:第七章第一节 自然特征与农业.docx
  • 人教版地理八年级下册:第十章《中国在世界中》课时练.docx人教版地理八年级下册:第十章《中国在世界中》课时练.docx
  • 人教版地理八年级下册:第9章 青藏地区《高原湿地—三江源地区》课时练.docx人教版地理八年级下册:第9章 青藏地区《高原湿地—三江源地区》课时练.docx
  • 人教版地理八年级下册:第8章 西北地区 第二节《干旱的宝地—塔里木盆地》课时练2.docx人教版地理八年级下册:第8章 西北地区 第二节《干旱的宝地—塔里木盆地》课时练2.docx
  • 人教版地理八年级下册:第8章 第一节自然特征与农业教案2.docx人教版地理八年级下册:第8章 第一节自然特征与农业教案2.docx
  • 人教版地理八年级下册:第8章 第一节自然特征与农业教案2.docx人教版地理八年级下册:第8章 第一节自然特征与农业教案2.docx
  • 人教版地理八年级下册:第7章第三节“东方明珠”——香港和澳门 教案2.docx人教版地理八年级下册:第7章第三节“东方明珠”——香港和澳门 教案2.docx
  • 人教版地理八年级下册:第7章第三节“东方明珠”——香港和澳门 教案2.docx人教版地理八年级下册:第7章第三节“东方明珠”——香港和澳门 教案2.docx
  • 人教版地理八年级下册:第7章 南方地区 第四节《祖国的神圣领土—台湾省》课时练.docx人教版地理八年级下册:第7章 南方地区 第四节《祖国的神圣领土—台湾省》课时练.docx
  • 人教版地理八年级下册:第7章 南方地区 第二节《“鱼米之乡”—长江三角洲地区》课时练.docx人教版地理八年级下册:第7章 南方地区 第二节《“鱼米之乡”—长江三角洲地区》课时练.docx
  • 人教版地理八年级下册:第6章第二节 “白山黑水”—东北三省教案3.docx人教版地理八年级下册:第6章第二节 “白山黑水”—东北三省教案3.docx
  • 人教版地理八年级下册:第6章第二节 “白山黑水”—东北三省教案3.docx人教版地理八年级下册:第6章第二节 “白山黑水”—东北三省教案3.docx
  • 人教版地理八年级下册:第6章 北方地区 第四节《祖国的首都—北京》课时练.docx人教版地理八年级下册:第6章 北方地区 第四节《祖国的首都—北京》课时练.docx
  • 人教版地理八年级下册 期中检测卷(3).docx人教版地理八年级下册 期中检测卷(3).docx
  • 人教版地理八年级下册 期中检测卷(2).docx人教版地理八年级下册 期中检测卷(2).docx
  • 人教版地理八年级下册 9.2高原湿地——三江源地区预习案.docx人教版地理八年级下册 9.2高原湿地——三江源地区预习案.docx
  • 人教版地理八年级下册 9.1自然特征与农业预习案.docx人教版地理八年级下册 9.1自然特征与农业预习案.docx
  • 人教版地理八年级下册 8.2干旱的宝地——塔里木盆地预习检测.docx人教版地理八年级下册 8.2干旱的宝地——塔里木盆地预习检测.docx
  • 人教版地理八年级下册 8.2干旱的宝地——塔里木盆地预习案.docx人教版地理八年级下册 8.2干旱的宝地——塔里木盆地预习案.docx
  • 人教版地理八年级下册 8.1自然特征与农业预习检测.docx人教版地理八年级下册 8.1自然特征与农业预习检测.docx
  • 人教版地理八年级下册 8.1自然特征与农业预习案.docx人教版地理八年级下册 8.1自然特征与农业预习案.docx
  • 人教版地理八年级下册 7.4祖国的神圣领土──台湾省预习检测.docx人教版地理八年级下册 7.4祖国的神圣领土──台湾省预习检测.docx
  • 人教版地理八年级下册 7.4祖国的神圣领土──台湾省预习案.docx人教版地理八年级下册 7.4祖国的神圣领土──台湾省预习案.docx
  • 人教版地理八年级下册 7.2“鱼米之乡”——长江三角洲地区预习检测.docx人教版地理八年级下册 7.2“鱼米之乡”——长江三角洲地区预习检测.docx
  • 人教版地理八年级下册 7.2“鱼米之乡”——长江三角洲地区预习案.docx人教版地理八年级下册 7.2“鱼米之乡”——长江三角洲地区预习案.docx
  • 人教版地理八年级下册 6.4祖国的首都——北京预习检测.docx人教版地理八年级下册 6.4祖国的首都——北京预习检测.docx
  • 人教版地理八年级下册 6.4祖国的首都——北京预习案.docx人教版地理八年级下册 6.4祖国的首都——北京预习案.docx
  • 人教版地理八年级下册 6.3世界最大的黄土堆积区——黄土高原预习检测.docx人教版地理八年级下册 6.3世界最大的黄土堆积区——黄土高原预习检测.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1