专题03 截长补短法(教师版)备战2020年中考几何压轴题分类导练学霸冲冲冲shop348121278.taobao.com.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题03 截长补短法教师版备战2020年中考几何压轴题分类导练学霸冲冲冲shop348121278.taobao.com 专题 03 截长补短 教师版 备战 2020 年中 几何 压轴 分类 导练学霸
- 资源描述:
-
1、专题3:截长补短法【典例引领】例题:(2013黑龙江龙东地区)正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OEMN于点E,过点B作BFMN于点F。(1)如图1,点O、B两点均在直线MN上方时,易证:AF+BF=2OE(不需证明)(2)当正方形ABCD绕点A顺时针旋转至图2、图3的位置时,线段AF、BF、OE之间又有怎样的关系?请直接写出你的猜想,并选择一种情况给予证明。【答案】图2结论:AFBF=2OE,图3结论:BF-AF=2OE【分析】(1)过点B作BGOE于G,可得四边形BGEF是矩形,根据矩形的对边相等可得EF=BG,BF=GE,根据正方形的对角线相等且互
2、相垂直平分可得OA=OB,AOB=90,再根据同角的余角相等求出AOE=OBG,然后利用“角角边”证明AOE和OBG全等,根据全等三角形对应边相等可得OG=AE,OE=BG,再根据AFEF=AE,整理即可得证;(2)选择图2,过点B作BGOE交OE的延长线于G,可得四边形BGEF是矩形,根据矩形的对边相等可得EF=BG,BF=GE,根据正方形的对角线相等且互相垂直平分可得OA=OB,AOB=90,再根据同角的余角相等求出AOE=OBG,然后利用“角角边”证明AOE和OBG全等,根据全等三角形对应边相等可得OG=AE,OE=BG,再根据AFEF=AE,整理即可得证;选择图3同理可证【解答】(1)
3、证明:如图,过点B作BGOE于G,则四边形BGEF是矩形,EF=BG,BF=GE,在正方形ABCD中,OA=OB,AOB=90,BGOE,OBG+BOE=90,又AOE+BOE=90,AOE=OBG,在AOE和OBG中,AOEOBG(AAS),OG=AE,OE=BG,AFEF=AE,EF=BG=OE,AE=OG=OEGE=OEBF,AFOE=OEBF,AF+BF=2OE;(2)图2结论:AFBF=2OE,图3结论:AFBF=2OE对图2证明:过点B作BGOE交OE的延长线于G,则四边形BGEF是矩形,EF=BG,BF=GE,在正方形ABCD中,OA=OB,AOB=90,BGOE,OBG+BOE
4、=90,又AOE+BOE=90,AOE=OBG,在AOE和OBG中,AOEOBG(AAS),OG=AE,OE=BG,AFEF=AE,EF=BG=OE,AE=OG=OE+GE=OE+BF,AFOE=OE+BF,AFBF=2OE;若选图3,其证明方法同上【强化训练】1、(2018黑龙江龙东地区)如图,在RtBCD中,CBD=90,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EFEA,交CD所在直线于点F.(1) 当点E在线段BD上移动时,如图(1)所示,求证:BCDE=22DF.(2) 当点E在直线BD上移动时,如图(2)、图(3)所示。线段BC、DE和DF又
5、有怎样的数量关系?请直接写出你的猜想,不需证明.【答案】(1)答案见解答(2)图(2)DEBC=22DF图(3)BC+DE=22DF【分析】为了证明图(2)的结论,需要构造等腰直角三角形,在BC上截取BH,使得BH=BE.连接EH,再证AHEEDF,即可得出结论图(3)同理可证【解答】(1)证明:如图1中,在BA上截取BH,使得BH=BEBC=AB=BD,BE=BH,AH=ED,AEF=ABE=90,AEB+FED=90,AEB+BAE=90,FED=HAE,BHE=CDB=45,AHE=EDF=135,AHEEDF,EH=DF,BCDE=BDDE=BE=22EHEH=DFBCDE=22DF(
6、3) 解:如图2中,在BC上截取BH=BE,同法可证:DF=EH可得:DEBC=22DF如图3中,在BA上截取BH,使得BH=BE同法可证:DF=HE,可得BC+DE=22DF2如图,(图1,图2),四边形ABCD是边长为4的正方形,点E在线段BC上,AEF=90,且EF交正方形外角平分线CP于点F,交BC的延长线于点N, FNBC.(1)若点E是BC的中点(如图1),AE与EF相等吗?(2)点E在BC间运动时(如图2),设BE=x,ECF的面积为y。求y与x的函数关系式;当x取何值时,y有最大值,并求出这个最大值.【答案】(1)AE=EF;(2)y=-12x2+2x(0x4),当x=2,y最
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-828150.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
四年级上册语文课件《凉州词》|长春版(共8张PPT).ppt
