专题07 三角形中的重要模型-等积模型(原卷版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题07 三角形中的重要模型-等积模型原卷版 专题 07 三角形 中的 重要 模型 原卷版
- 资源描述:
-
1、专题07 三角形中的重要模型-等积模型三角形的面积问题在中考数学几何模块中占据着重要地位,等积变形是中学几何里面一个非常重要的思想,下面的五大模型也都是依托等积变形思想变化而成的,也是学生必须掌握的一块内容。本专题就三角形中的等积模型(蝴蝶(风筝)模型,燕尾模型,鸟头模型,沙漏模型,金字塔模型)进行梳理及对应试题分析,方便掌握。模型1. 等积变换基础模型1)等底等高的两个三角形面积相等;如图1,当/,则; 反之,如果,则可知直线/。 图1 图2 图32)两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比。如图2,当点D是BC边上的动点时,则SABDSADCBDD
2、C。如图3,当点D是BC边上的动点,BEAD,CFAD时,则SABDSADCBECF。例1(山东省临沂市2023-2024学年八年级月考)如图,是边的中线,点E在上,的面积是3,则的面积是()A4B3C2D1例2(河北省石家庄市2023-2024学年八年级月考)如图,是的边上的中线,是的边上的中线,是的边上的中线,若的面积是32,则阴影部分的面积是()A9B12C18D20例3(湖北十堰五校联考2023-2024学年八年级月考)如图,点为的重心,分别为,的中点,具有性质:已知的面积为2,则的面积为 例4(浙江省杭州市2023-2024学年八年级上学期10月月考数学试题)如图,是的一条中线,E为
3、边上一点且,相交于F,四边形的面积为6,则的面积是 例5(2023春江西萍乡八年级统考期中)基本性质:三角形中线等分三角形的面积如图1,是边上的中线,则理由:因为是边上的中线,所以 又因为,所以所以三角形中线等分三角形的面积基本应用:在如图2至图4中,的面积为a(1)如图2,延长的边到点D,使,连接若的面积为,则 (用含a的代数式表示);(2)如图3,延长的边到点D,延长边到点E,使,连接若的面积为,则 (用含a的代数式表示);(3)在图3的基础上延长到点F,使,连接,得到(如图4)若阴影部分的面积为,则 (用含a的代数式表示);拓展应用:(4)如图5,点D是的边上任意一点,点E,F分别是线段
4、,的中点,且的面积为,则的面积为 (用含a的代数式表示),并写出理由例6(2023春上海九年级期中)解答下列各题(1)如图1,已知直线,点、在直线上,点、在直线上,当点在直线上移动时,总有_与的面积相等 (2)解答下题如图2,在中,已知,且边上的高为5,若过作,连接、,则的面积为_如图3,、三点在同一直线上, ,垂足为若,求的面积(3)如图4,在四边形中,与不平行,且,过点画一条直线平分四边形的面积(简单说明理由)模型2.蝴蝶(风筝)模型蝴蝶模型(定理)提供了解决不规则四边形的面积问题的一个途径。通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面
5、积对应的对角线的比例关系。 蝴蝶定理:任意四边形中的比例关系如图1,结论:或;。梯形蝴蝶定理:梯形中比例关系如图2,结论:;梯形的对应份数为。例1在四边形ABCD中,AC和BD互相垂直并相交于O点,四个小三角形的面积如图所示则阴影部分三角形BCO的面积为 例2、如图,SACB24平方厘米,SACD16平方厘米,SABD25平方厘米,则SCOB为 平方厘米。例3、如下图,梯形的平行于,对角线,交于,已知与的面积分别为 平方厘米与平方厘米,那么梯形的面积是_平方厘米 例4、如图,梯形中,、的面积分别为和,则梯形的面积为 例5、梯形ABCD中,对角线AC,BD交于点O,AB垂直AC,并且已知AO6厘
6、米,BO10厘米,则三角形DOC的面积是 平方厘米。例6、图中大平行四边形被分成若干小块,其中四块的面积已经标出,则中间的四边形GQHS的面积为 。模型3.燕尾(定理)模型条件:如图,在中,E分别是上的点,在上一点,结论:S1S2S3S4S1+S3S2+S4BEEC。例1、如图,ABC中,M、N分别是BC、AC边上的三等分点,AM、BN相交于点O,已知BOM的面积为2,则四边形MCNO的面积为 。例2(2023山东八年级专题练习)如图,在ABC中,已知点P、Q分别在边AC、BC上,BP与AQ相交于点O,若BOQ、ABO、APO的面积分别为1、2、3,则PQC的面积为()A22B22.5C23D
7、23.5例3如下图,三角形中,且三角形的面积是,则三角形的面积为 例4(2023江苏淮安九年级月考)已知的面积是60,请完成下列问题:(1)如图1,若是的边上的中线,则的面积_的面积(填“”“”“=”)(2)如图2,若、分别是的、边上的中线,求四边形的面积可以用如下方法,连接,由得:,同理:,设,则,由题意得:,可列方程组为:,解得_,则可得四边形的面积为_(3)如图3,则四边形的面积为_(4)如图4,D,F是的三等分点,E,G是的三等分点,与交于O,且,则四边形A的面积为_模型4.鸟头定理(共角定理)模型 图1 图2共角三角形:两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。共角
8、定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。 如图,在中,分别是上的点(如图1)或在的延长线上,在上(如图2),则例1、如图,在三角形ABC中,D、E是AB,AC上得点,且AD:AB=2:5,AE:AC=4:7,三角形ADE的面积是16平方厘米,则ABC的面积为 。例2(2023山西晋中九年级统考阶段练习)阅读理解如果两个三角形中有一组对应角相等或互补,那么这两个三角形叫做共角三角形,共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比,例:在图1中,点D,E分别在AB和AC上,ADE和ABC是共角三角形,则证明:分别过点E,C作EGAB于点G,CFAB于点
9、F,得到图2,AGE=AFC,又A=A,GAEFAC,又 即 任务:(1)如图3,已知BAC+DAE=180,请你参照材料的证明方法,求证:(2)在(1)的条件下,若则AE= 例3(2023重庆九年级专题练习)问题提出:如图1,D、E分别在ABC的边AB、AC上,连接DE,已知线段ADa,DBb,AEc,ECd,则SADE,SABC和a,b,c,d之间会有怎样的数量关系呢?问题解决:探究一:(1)看到这个问题后,我们可以考虑先从特例入手,找出其中的规律如图2,若DEBC,则ADEB,且AA,所以ADEABC,可得比例式:而根据相似三角形面积之比等于相似比的平方可得根据上述这两个式子,可以推出:
10、(2)如图3,若ADEC,上述结论还成立吗?若成立,请写出证明过程;着不成立,请说明理由探究二:回到最初的问题,若图1中没有相似的条件,是否仍存在结论:?方法回顾:两个三角形面积之比,不仅可以在相似的条件下求得,当两个三角形的底成高具有一定的关系时,也可以解决如图4,D在ABC的边上,做AHBC于H,可得:借用这个结论,请你解决最初的问题延伸探究:(1)如图5,D、E分别在ABC的边AB、AC反向延长线上,连接DE,已知线段ADa,ABb,AEc,ACd,则 (2)如图6,E在ABC的边AC上,D在AB反向延长线上,连接DE,已知线段ADa,ABb,AEc,ACd, 结论应用:如图7,在平行四
11、边形ABCD中,G是BC边上的中点,延长GA到E,连接DE交BA的延长线于F,若AB5,AG4,AE2,ABCD的面积为30,则AEF的面积是 模型5.金字塔与沙漏模型金字塔模型 沙漏模型条件:;。例1(2023秋辽宁沈阳九年级校考阶段练习)如图,已知点D、E分别是边上的点,且,面积比为,交于点F则()ABCD例2(2023福建龙岩九年级校考阶段练习)如图,中,与相交于点如果,那么等于()ABCD例3(2023江苏模拟预测)如图所示的网格是正方形网格,A,B,C,D是网格线交点,AC与BD相交于点O,则的面积与的面积的比为()A1:2BC1:4D例4(2023春北京海淀九年级校考开学考试)如图
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
六年级语文下册课件-6商鞅南门立木(2)∣语文S版 (共18张PPT).ppt
