分享
分享赚钱 收藏 举报 版权申诉 / 30

类型专题1.11 二次函数y=a(x-h)² k(a≠0)的图象与性质(基础篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(浙教版).docx

  • 上传人:a****
  • 文档编号:830728
  • 上传时间:2025-12-16
  • 格式:DOCX
  • 页数:30
  • 大小:784.67KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题1.11 二次函数y=ax-h² ka0的图象与性质基础篇专项练习-2022-2023学年九年级数学上册基础知识专项讲练浙教版 专题 1.11 二次 函数 图象 性质 基础 专项
    资源描述:

    1、专题1.11 二次函数的图象与性质(基础篇)(专项练习)一、单选题1抛物线的顶点坐标为()ABCD2关关于二次函数y=-2(x-2)2+1的图像,下列叙述不正确的是()A对称轴为直线x=2B顶点坐标为(-2,1)C开口向下D与x轴有两个交点3关于二次函数的最值,下列说法正确的是()A有最大值1B有最小值1C有最大值6D有最小值64二次函数的对称轴为()A直线B直线C直线D直线5若二次函数,当时,则a的值是()A1BCD16已知二次函数y=-2(x+b)2,当时,y随x的增大而增大,当时,y随x的增大而减小,则当时,y的值为()A-12B12C32D-327设,是抛物线上的三点,则的大小关系为(

    2、)ABCD8如图,二次函数ya(x+2)2+k的图象与x轴交于A(6,0),B两点,下列说法错误的是()Aa0B图象的对称轴为直线x2C当x0时,y随x的增大而增大D点B的坐标为(2,0)9把二次函数的图象向左平移1个单位,然后向上平移3个单位,则平移后的图象对应的二次函数的关系式为()ABCD10抛物线向右平移1个单位长度,再向下平移3个单位长度后得到的抛物线的解析式为()A BC D11将抛物线y3(x2)2+1,向上平移2个单位长度,再左平移3个单位长度,所得新抛物线的函数表达式为()Ay3(x+1)2+3By3(x5)2+3Cy3(x5)21Dy3(x+1)2112如果将抛物线向右平移

    3、2个单位后得到,那么原抛物线的表达式是()ABCD13若抛物线的对称轴是直线x=-1,且它与函数的形状相同,开口方向相同,则a和h的值分别为()A3和 -1B-3和1C3和1D-1和314如果二次函数图象的形状与的形状相同,且顶点坐标是,那么这个函数的解析式为()AB或CD或15如图,在平面直角坐标系中,有一系列的抛物线(为正整数),若和的顶点的连线平行于直线,则该条抛物线对应的的值是()A8B9C10D1116当两条曲线关于某直线l对称时,我们把这两条曲线叫做关于直线l的对称曲线如果抛物线C1:yax22x与抛物线C2:y(x+h)2+b是关于直线x1的对称曲线,则h+b的值为()A2B3C

    4、4D417在某圆形喷水池的池中心竖直安装一根水管,在水管的顶端安一个喷水头,以水管与地面交点为原点,原点与水柱落地处所在直线为x轴,建立如图所示的平面直角坐标系,若喷出的抛物线形水柱解析式为(0x3),则水管长为()A1mB2mCmD3m18如图,一抛物线型拱桥,当拱顶到水面的距离为2m时,水面宽度为4m那么水位下降1m时,水面的宽度为()ABCD19将二次函数y(x3)2+k的图象向上平移5个单位,若平移后的函数图象与直线y2没有交点,则k的取值范围是()Ak3Bk3Ck3Dk320如图所示,在抛物线y =x2上有A,B两点,其横坐标分别为 1 ,2;在y轴上有一动点C,则AC + BC 最

    5、短距离为( )A5BCD二、填空题21二次函数的图象顶点是_22二次函数的最大值是_23若抛物线的顶点在y轴上,则_24当xm时,两个函数y1(x4)22和y2(x3)21的函数值都随着x的增大而减小,则m的最小值为_25写出一个满足“当时,随增大而减小”的二次函数解析式_26请写出一个函数表达式,当自变量x1时使其图像的函数值y随自变量x的增大而减小:_27当时,函数的函数值随的增大而减小,的取值范围是_28在平面直角坐标系内有线段PQ,已知P(3,1)、Q(9,1),若抛物线与线段PQ有交点,则a 的取值范围是_29将抛物线先向左平移2个单位长度,再向上平移个单位长度若得到的抛物线经过点,

    6、则的值是_30若二次函数(a,k为常数,且)的图象与x轴的一个交点为,则关于x的不等式的解集为_31将抛物线向左平移2个单位,向上平移1个单位后,所得抛物线为,则抛物线解析式为_32将抛物线向右平移1个单位,所得抛物线的顶点坐标是_33已知二次函数的图象开口向下,顶点坐标是(0,3),则这个二次函数的表达式可以是_34抛物线关于轴对称的抛物线的解析式为_35把二次函数的图象关于轴对称后得到的图象的函数关系式为_36写出一个二次函数,其图像满足:(1)开口向下;(2)顶点坐标是这个二次函数的解析式可以是_37如图,抛物线 与直线交与点A与点B,点P是线段AB上的动点,过点P作PQy轴,交抛物线于

    7、点Q,则线段PQ长的最大值为_38抛物线与x轴的两个交点和顶点构成的三角形的面积为_39如图,抛物线与过点且平行于x轴的直线相交于点、,与轴交于点C,若为直角,则_40如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点,与y轴交于C点,其顶点为D,若ABC与ABD的面积相等,则m值为_三、解答题41已知二次函数y(x2)2+3(1)写出此函数图象的开口方向和顶点坐标;(2)当y随x增大而减小时,写出x的取值范围;(3)当1x4时,求出y的取值范围42已知抛物线y=a(x-h)+k的图象如图所示,根据图象解答下列问题:(1)写出抛物线的解析式;(2)写出随的增大而增大的自变量的取值范围

    8、;(3)当自变量取何值时,函数有最大值?最大值为多少?43如图,已知经过原点的抛物线与轴交于另一点A(2,0)(1)求的值和抛物线顶点的坐标;(2)求直线的解析式44如图,抛物线y=2(x-2)2与平行于x轴的直线交于点A,B,抛物线顶点为C,ABC为等边三角形,求SABC;45某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y(元/千度)与电价x(元/千度)的函数图象如图:(1)请求出y与x之间的函数关系式;(2)为了实现节能减排目标,有关部门规定,该厂电价x(元/千度)与每天用电量m(千度)的函数关系为x=20m+500,且该工厂每

    9、天用电量不超过50千度,为了获得最大利润w,工厂每天应安排使用多少度电?工厂每天消耗电产生利润最大是多少元?参考答案1C【分析】已知抛物线顶点式y=a(x-h)2+k,顶点坐标是(h,k)解:抛物线y=2(x1)2+2是顶点式,顶点坐标是(1,2)故选:C【点拨】本题考查由抛物线的顶点式与抛物线顶点的坐标的关系,熟练掌握顶点式是解答此题的关键2B【分析】根据二次函数的性质对各选项分析判断后利用排除法求解解:由二次函数y=-2(x-2)2+1可知:a=-20,所以开口向下,顶点坐标为(2,1),对称轴为x=2,二次函数的图像与x轴有两个交点,故A、C、D正确,B错误,故选:B【点拨】本题考查了二

    10、次函数的图像及其性质,解题的关键是熟悉二次函数的图像.3C【分析】根据二次函数顶点式的图像与性质进行解答即可解:二次函数顶点坐标为:,开口向下,有最大值,故选:C【点拨】本题考查了二次函数顶点式的图像和性质,熟练掌握二次函数的性质是解题的关键4D【分析】根据,即可求得解:该二次函数的对称为直线,故选:D.【点拨】本题考查了求二次函数的对称轴问题,熟练掌握和运用求二次函数对称轴的方法是解决本题的关键5D【分析】由二次函数的顶点式可得函数的最大值,进而依题意可求得a的值解: 二次函数的顶点坐标为 二次函数在时取得最大值3-9a依题意有,解得 故选:D【点拨】本题考查二次函数的图像和性质,熟练掌握相

    11、关知识是解题的关键6D【分析】根据当时,y随x的增大而增大,当时,y随x的增大而减小,即可得到抛物线的对称轴为直线,由此求解即可解:当时,y随x的增大而增大,当时,y随x的增大而减小,抛物线的对称轴为直线,当时,故选D【点拨】本题主要考查了二次函数图象的性质,熟知二次函数图象的性质是解题的关键7C【分析】根据二次函数的性质得到抛物线y=-(x+1)2+k的开口向下,对称轴为直线x=-1,然后根据三个点离对称轴的远近判断函数值的大小.解:抛物线y=-(x+1)2+k的开口向下,对称轴为直线x=-1,而C(2,y3)离直线x=-1的距离最远,A(0,y1)点离直线x=-1最近,y3y2y1故选C【

    12、点拨】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式也考查了二次函数的性质8C【分析】根据图象即可判断A、C;由解析式即可判断B;根据抛物线的对称性即可判断D解:二次函数ya(x+2)2+k的图象开口方向向下,a0,故A正确,不合题意;由图象可知,抛物线的对称轴为直线x2,故B正确,不合题意;由图象知,当x0时,由图象可知y随x的增大先增大后减小,故C错误,符合题意;抛物线的对称轴为直线x2,且过A(6,0),B点的坐标为(2,0),故D正确,不合题意;故选:C【点拨】本题考查了二次函数的性质,熟练运用二次函数的图像和性质是解题关键9A【分析】根据二次函数图象的平移规

    13、律解答即可解:由题意知,平移后抛物线的解析式是,故A正确故选:A【点拨】本题考查了二次函数图象的平移,解题的关键在于掌握二次函数图象平移的规律:左加右减,上加下减10B【分析】根据二次函数平移规律“上加下减,左加右减”即可求解解:将抛物线先向右平移1个单位,得到,再向下平移3个单位,得到的抛物线是,即故选:B【点拨】本题考查二次函数的平移,掌握二次函数的平移规律“上加下减,左加右减”是解题的关键11A【分析】直接根据“上加下减,左加右减”的原则进行解答即可解:由“上加下减,左加右减”的原则可知,将抛物线y3(x2)2+1,向上平移2个单位长度,再向左平移3个单位长度,所得新抛物线的函数表达式为

    14、y3(x2+3)2+1+2,即y3(x+1)2+3故选:A【点拨】本题考查二次函数图象的平移,熟练掌握二次函数图象平移解析式变化原则“上加下减,左加右减”是解题的关键12C【分析】根据二次函数平移的性质进行解题即可;解:将抛物线向右平移2个单位后得到,抛物线向左移2个单位得原函数解析式,故选:C【点拨】本题主要考查二次函数图象平移的性质,掌握二次函数图象平移的性质是解题的关键13A【分析】根据抛物线的对称轴是直线x=-1,且它与函数的形状相同,开口方向相同,即可得到,从而得到答案解:抛物线的对称轴是直线x=-1,且它与函数的形状相同,开口方向相同,故选A【点拨】本题主要考查了二次函数图像的性质

    15、,解题的关键在于能够熟练掌握相关知识进行求解14B【分析】根据二次函数图象的形状与的形状相同,可得到所求函数解析式的二次项系数为 ,再根据顶点坐标是,即可求解解:二次函数图象的形状与的形状相同,即二次项系数 相同,所求函数解析式的二次项系数为 ,顶点坐标是,这个函数的解析式为或,故选:B【点拨】本题主要考查了二次函数的性质,根据题意得到二次项系数 相同是解题的关键15B【分析】设C1和Cn的顶点的连线为y=10x+b,将n=1时顶点代入求出解析式,然后再将n=n时顶点代入求n解:设C1和Cn的顶点所在直线解析式为y=kx+b,C1和Cn的顶点的连线平行于直线y=10x,k=10,y=10x+b

    16、,抛物线y=(x-n)2+n2的顶点坐标为(n,n2),当n=1时,顶点为(1,1),将(1,1)代入y=10x+b,解得b=-9,y=10x-9,将(n,n2)代入解析时可得:n2=10n-9,解得n=1(不合题意舍去)或n=9,n=9故选:B【点拨】本题考查二次函数的应用,解题关键是掌握一次函数k的几何意义16A【分析】根据轴对称的性质可知,抛物线C1与C2关于直线x1对称,则它们的形状与大小均应该保持一致,从而综合两个解析式确定出a的值,再由抛物线C1的顶点坐标确定出对称之后抛物线C2的顶点坐标,从而得到h和b 的值,即可得出结论解:抛物线C1:yax22x与抛物线C2:y(x+h)2+

    17、b是关于直线x1的对称曲线,即:抛物线C1:yx22x,抛物线C1的顶点坐标为:,则关于直线x1对称的抛物线C2的顶点坐标为:,抛物线C2:y(x+3)2-1,即:h=3,b=-1,h+b=2,故选:A【点拨】本题考查抛物线的对称变换,理解轴对称的性质以及抛物线的基本性质是解题关键17C【分析】根据函数解析式,令,可求出对应的y值,即为水管的长度解:函数解析式令,则则水管的长度为故选:C【点拨】本题考查了二次函数的实际应用,利用数形结合的思想根据函数表达式求解出对应的函数值是解决本题的关键18B【分析】结合已知条件先建立适当的坐标系,然后设出解析式,利用点的坐标求得解析式,再将代入解析式求得相

    18、应的x的值,进而求得答案解:以拱顶为坐标原点建立坐标系,如图:设抛物线解析式为:,观察图形可知抛物线经过点,抛物线解析式为:,当水位下降米后,即当时,有,水面的宽度为:故选:B【点拨】本题考查了二次函数的应用,根据已知条件建立坐标系从而求得二次函数解析式是解决问题的关键19C【分析】根据题意可得平移后的二次函数解析式为,进而由题意可得一元二次方程,然后根据题意可进行求解解:平移后的二次函数解析式为,平移后的函数图象与直线y2没有交点,一元二次方程无解,即无解,解得:;故选C【点拨】本题主要考查二次函数图象的平移及与一元二次方程的关系,熟练掌握二次函数图象的平移及与一元二次方程的关系是解题的关键

    19、20B解:因为在抛物线y =x2上A,B两点,其横坐标分别为 1 ,2;所以纵坐标是,-1,-4,所以A(1,-1)B(2,-4),取点A关于y轴的对称点为,则点的坐标是(-1,-1),则AC + BC 最短距离=B,故选B.【点拨】1.二次函数;2.轴对称;3.勾股定理.21【分析】直接利用二次函数顶点式的图象与性质求解即可解:的顶点坐标为:故答案为:【点拨】本题主要考查了二次函数的图象与性质,掌握二次函数顶点式的图象与性质是解题的关键22-3【分析】二次函数的顶点式y=a(xh)2+b在x=h时有最值,a0时有最小值为b,a0时有最大值为b,即可得出答案解:a=10,y有最大值,当时,y有

    20、最大值为-3故答案为:-3【点拨】本题考查了二次函数顶点式求最值,熟练掌握二次函数的表达式及最值的确定方法是解题的关键232【分析】根据题意可知抛物线对称轴为,然后可求得的值解:抛物线的顶点在y轴上,对称轴,解得:故答案为:2【点拨】本题考查二次函数的性质,判断对称轴为是解题的关键244【分析】先确定两个函数的开口方向和对称轴,再得出符合条件的x的取值范围,从而得到m的最小值解:函数y1(x4)22开口向下,对称轴为直线x=4,函数y2(x3)21开口向下,对称轴为直线x=3,当函数值都随着x的增大而减小,则x4,即m的最小值为4,故答案为:4【点拨】本题考查了二次函数的图像和性质,解题的关键

    21、是掌握二次函数的基本性质25(答案不唯一)【分析】先根据二次函数的图象和性质取对称轴x=2,设抛物线的解析式为y=a(x-2)2,由于在抛物线对称轴的右边, y 随 x 增大而减小,得出a0,于是去a=-1,即可解答解:设抛物线的解析式为y=a(x-2)2,在抛物线对称轴的右边, y 随 x 增大而减小,a0,符合上述条件的二次函数均可,可取a=-1,则y=-(x-2)2 故答案为:y=-(x-2)2【点拨】本题考查了二次函数的图象和性质,解题的关键是掌握二次函数的图象和性质26y=-(x-1)2+1(答案不唯一)【分析】根据函数的性质得到二次函数开口向下,对称轴是直线x=1,即可得到函数解析

    22、式解:当自变量x1时使其图象的函数值y随自变量x的增大而减小,函数解析式为y=-(x-1)2+1,故答案为:y=-(x-1)2+1(答案不唯一)【点拨】此题考查了求二次函数的解析式,正确掌握二次函数的增减性是解题的关键27【分析】根据二次函数的解析式判定函数图象的开口方向,和顶点坐标,从而确定单调区间即可解:函数的二次项系数为20,该二次函数的开口方向向上,又函数的顶点坐标为(-m,1),该二次函数图象x-m时,函数值y随着x的增大而减小,当x-1时,函数值y随着x的增大而减小,-m-1,m1,故答案为:m1【点拨】本题主要考查二次函数的性质,熟练掌握二次函数的性质是解题的关键28【分析】由可

    23、得抛物线随值的变化左右移动,分别求出抛物线经过点P,Q所对应的的值即可解:由可得抛物线的对称轴直线为,顶点坐标为(,0),当对称轴在点P左侧时,把P(3,1)代入得,解得或(舍去),当对称轴在点P右侧时,把Q(9,1),代入得,解得或(舍去),当时,抛物线与线段PQ有交点,故答案为:【点拨】本题考查了抛物线的图象与性质,掌握抛物线随值的变化左右移动是解题的关键294【分析】根据抛物线的平移规律:上加下减,左加右减解答即可解:抛物线的顶点坐标为(1, -2),先向左平移2个单位长度,再向上平移个单位长度则平移后抛物线的顶点坐标为平移后的抛物线解析式为,平移后的抛物线经过点,解得故答案为:4【点拨

    24、】本题考查了抛物线的平移规律关键是确定平移前后抛物线的顶点坐标,寻找平移规律30【分析】根据函数的对称轴可求出二次函数与x轴的另一个交点,再根据二次函数的平移特点求出y=与x轴的交点,再根据二次函数的图象与性质即可求解解:二次函数的对称轴为x=1,图象与x轴的一个交点为,二次函数与x轴的另一个交点为(3,0),二次函数向右平移1个单位得到y=,故二次函数y=与x轴的交点为(0,0)和(4,0),二次函数y=0时,x的取值为,关于x的不等式的解集为,故答案为:【点拨】此题主要考查二次函数与不等式综合,解题的关键是熟知二次函数的图象与性质、平移的特点31#【分析】设抛物线为 ,根据平移的规律写出平

    25、移后的解析式,并与已知相等,即可求解解:设抛物线为 将抛物线向左平移2个单位,向上平移1个单位后,可得即为 解得 抛物线为【点拨】本题考查了二次函数图象的平移,牢记“左加右减,上加下减”是解题的关键32(2,-2)【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式,即可求出顶点坐标解:抛物线的顶点坐标为(1,-2)向右平移1个单位后,顶点坐标为(2,-2)故答案为:(2,-2)【点拨】此题考查了抛物线的平移以及抛物线解析式的变化规律,解决本题的关键是熟记点的平移规律“左加右减,上加下减”33yx23(答案不唯一)【分析】设二次函数的解析式为,由条件可以得出a0,再将顶点坐标

    26、代入解析式就可以求出结论解:设二次函数的解析式为,二次函数的图象开口线下,a0,顶点坐标为(0,3),h=0,k=3,即二次函数解析式的形式为:,a0,即任写一个:(答案不唯一),故答案为:(答案不唯一),【点拨】本题考查了根据顶点式运用待定系数法求二次函数的解析式的运用,注意本题答案不唯一只要满足,a0即可34【分析】根据题意可知抛物线的顶点坐标为,进而可得该抛物线关于x轴对称的顶点坐标为,然后问题可求解解:由抛物线可知顶点坐标为,该抛物线关于轴对称的抛物线的顶点坐标为,抛物线关于轴对称的抛物线的解析式为;故答案为【点拨】本题主要考查二次函数的性质及轴对称,熟练掌握二次函数的性质及轴对称是解

    27、题的关键35【分析】函数的图象关于y轴对称后的顶点坐标为(-1,0),然后根据顶点式写出解析式解:的顶点坐标是(1,2),由于(1,2)关于y轴的对称点为(-1,2),所以得到的图象的函数解析式是;故答案为【点拨】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式36【分析】根据题意写出一个,且顶点为 的二次函数即可,可根据顶点式写出函数解析式解:该函数的定点坐标为,且开口向下,这个二次函数的解析式可以是:故答案为:(答

    28、案不唯一)【点拨】本题考查了二次函数的性质,掌握顶点式是解题的关键37#0.25【分析】根据PQy轴,可设点,则,从而得到,再根据二次函数的性质,即可求解解:PQy轴,可设点,则,当时,最大,最大值故答案为:【点拨】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键388【分析】由抛物线表达式求出与x轴交点坐标,由图可以看出此抛物线关于y轴对称,求出顶点坐标,便可求出三角形的面积解:由抛物线y=x2-4=(x-2)(x+2)则抛物线与x轴地交点坐标为:(2,0),(-2,0),抛物线关于y轴对称,故顶点在y轴上,令x=0,得y=-4三角形的面积为:2-(-2)4=8故

    29、答案为:8【点拨】此题考查二次函数的基本性质,熟练掌握二次函数的基本性质是解题的关键39#-0.25【分析】直线与轴交于点,如图,则,利用二次函数的性质得到,再证明为等腰直角三角形得到,所以,然后把点坐标代入即可得到的值解:直线与轴交于点,如图,则,过点且平行于轴,为等腰三角形,CDy轴AD=BD,为等腰直角三角形,把代入,得,解得故答案为【点拨】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式也考查了二次函数的性质和等腰直角三角形的性质402【分析】求出顶点D和C的坐标,由三角形的面积关系得出关于m的方程,解方程即可解:,顶点D(2,),C(0,m),OC=m,SAB

    30、C=ABOC=ABm=AB,SABD=AB(4-m),ABC与ABD的面积相等AB =AB(4-m),解得:m=2故答案是:2【点拨】本题考查了抛物线与y轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键41(1)开口向下,顶点坐标是(2,3);(2)x2;(3)1y3【分析】(1)根据a的符号判断抛物线的开口方向;根据顶点式可求顶点坐标;(2)根据二次函数的增减性,当a0时,在对称轴的右侧,y随x的增大而减小;(3)因为顶点坐标(2,3)在1x4的范围内,开口向下,所以y最的大值为3;当x1时,y2;当x4时,y1,即可确定函数值y的范围解:(1)a10,图象开口向向下;

    31、y(x2)2+3,顶点坐标是(2,3);(2)对称轴x2,图象开口向选,y随x增大而减小x的取值范围为x2;(3)抛物线的对称轴x2,满足1x4,此时y的最大值为3,当x1时,y2;当x4时,y1,当1x4时,y的取值范围是1y3【点拨】此题考查了二次函数的性质,顶点坐标,对称轴,开口方向;还考查了二次函数的增减性42(1);(2);(3)当时,有最大值,最大值为2【分析】(1)根据图象可知,抛物线的顶点坐标为,且过点,设顶点式,将代入解析式,即可求得的值,进而求得抛物线的解析式;(2)根据函数图象可知,在对称轴的左侧,随的增大而增大;(3)根据图象可知,抛物线的顶点坐标为,且开口朝下,进而求

    32、得当时,最值为2解:(1)根据图象可知,抛物线的顶点坐标为,且过点,设顶点式,将代入得,解得,抛物线的解析式为;(2)根据函数图象可知,在对称轴的左侧,随的增大而增大,即时,随的增大而增大,(3)根据图象可知,抛物线的顶点坐标为,且开口朝下,当时,有最大值,最大值为2【点拨】本题考查了二次函数的图象与性质,掌握的图象与性质是解题的关键43(1),M (1,-2);(2)【分析】(1)将A(2,0)代入抛物线的解析式,可求得m的值,再配成顶点式即可求解;(2)利用待定系数法即可求得直线AM的解析式解:(1)抛物线过点A(2,0),解得,,顶点M的坐标是(1,-2);(2)设直线AM的解析式为,图

    33、象过A(2,0),M (1,-2),解得,直线AM的解析式为【点拨】本题考查了待定系数法求函数解析式,二次函数的图象和性质,解题的关键是灵活运用所学知识解决问题44 【分析】过B作BPx轴交于点P,连接AC,BC,由抛物线y=得C(2,0),于是得到对称轴为直线x=2,设B(m,n),根据ABC是等边三角形,得到BC=AB=2m-4,BCP=ABC=60,求出PB=PC=(m-2),由于PB=n=,于是得到(m-2)=,解方程得到m的值,然后根据三角形的面积公式即可得到结果解:过B作BPx轴交于点P,连接AC,BC,由抛物线y=得C(2,0),对称轴为直线x=2,设B(m,n),CP=m-2,

    34、ABx轴,AB=2m-4,ABC是等边三角形,BC=AB=2m-4,BCP=ABC=60,PB=PC=(m-2),PB=n=,(m-2)=,解得m=,m=2(不合题意,舍去),AB=,BP=,SABC=【点拨】本题考查二次函数的性质.45(1)y=0.2x+300(x0);(2)当工厂每天消耗50千度电时,工厂每天消耗电产生利润为最大,最大利润为1875元试题解析:(1)利用待定系数法可以求得工厂每千度电产生利润y与电价x的函数解析式;(2)设工厂每天消耗电产生利润为W元,根据关系式“每天消耗电产生利润=每天用电量每千度电产生的利润”便可得到W与m的函数关系式;利用配方法对上述表达式进行配方,结合二次函数性质即可求得W的最大值.解:(1)设工厂每千度电产生利润y(元/千度)与电价x(元/千度)的函数解析式为:y=kx+b,该函数图象过点(0,300),(500,200),解得所以y=0.2x+300(x0),(2)设工厂每天消耗电产生利润为w元,由题意得:w=my=m(0.2x+300)=m0.2(20m+500)+300=4m2+200m=4(m25)2+2500,在m25时,w随m的增大而最大,由题意,m50,当m=50时,w最大=(5025)2+2500=1875,即当工厂每天消耗50千度电时,工厂每天消耗电产生利润为最大,最大利润为1875元

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题1.11 二次函数y=a(x-h)² k(a≠0)的图象与性质(基础篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(浙教版).docx
    链接地址:https://www.ketangku.com/wenku/file-830728.html
    相关资源 更多
  • 人教版七年级生物上册教学设计:第一单元 生物和生物圈 第一章 认识生物》第一节 生物的特征.docx人教版七年级生物上册教学设计:第一单元 生物和生物圈 第一章 认识生物》第一节 生物的特征.docx
  • 人教版七年级生物上册导学案:第一单元 生物和生物圈 第一章 认识生物》第一节 生物的特征(无答案).docx人教版七年级生物上册导学案:第一单元 生物和生物圈 第一章 认识生物》第一节 生物的特征(无答案).docx
  • 人教版七年级生物上册同步练习:第二单元 第一章第一节 练习使用显微镜.docx人教版七年级生物上册同步练习:第二单元 第一章第一节 练习使用显微镜.docx
  • 人教版七年级生物上册同步练习:2.1.1练习使用显微镜.docx人教版七年级生物上册同步练习:2.1.1练习使用显微镜.docx
  • 人教版七年级生物上册同步练习:1.2.2生物与环境组成生态系统.docx人教版七年级生物上册同步练习:1.2.2生物与环境组成生态系统.docx
  • 人教版七年级生物上册同步练习1.1.2调查周边环境中的生物.docx人教版七年级生物上册同步练习1.1.2调查周边环境中的生物.docx
  • 人教版七年级生物上册3.5.2绿色植物的呼吸作用练习(含解析).docx人教版七年级生物上册3.5.2绿色植物的呼吸作用练习(含解析).docx
  • 人教版七年级生物上册3.5.2绿色植物的呼吸作用导学案(无答案).docx人教版七年级生物上册3.5.2绿色植物的呼吸作用导学案(无答案).docx
  • 人教版七年级生物上册3.5.1光合作用吸收二氧化碳释放氧气练习(含解析).docx人教版七年级生物上册3.5.1光合作用吸收二氧化碳释放氧气练习(含解析).docx
  • 人教版七年级生物上册3.5.1光合作用吸收二氧化碳释放氧气导学案(无答案).docx人教版七年级生物上册3.5.1光合作用吸收二氧化碳释放氧气导学案(无答案).docx
  • 人教版七年级生物上册3.4绿色植物是生物圈中有机物的制造者练习(含解析).docx人教版七年级生物上册3.4绿色植物是生物圈中有机物的制造者练习(含解析).docx
  • 人教版七年级生物上册3.4绿色植物是生物圈中有机物的制造者导学案(无答案).docx人教版七年级生物上册3.4绿色植物是生物圈中有机物的制造者导学案(无答案).docx
  • 人教版七年级生物上册3.3绿色植物与生物圈的水循环练习(含解析).docx人教版七年级生物上册3.3绿色植物与生物圈的水循环练习(含解析).docx
  • 人教版七年级生物上册3.2.3开花和结果导学案(无答案).docx人教版七年级生物上册3.2.3开花和结果导学案(无答案).docx
  • 人教版七年级生物上册3.2.3 开花和结果练习(含解析)教师用卷.docx人教版七年级生物上册3.2.3 开花和结果练习(含解析)教师用卷.docx
  • 人教版七年级生物上册3.2.2植株的生长导学案(无答案).docx人教版七年级生物上册3.2.2植株的生长导学案(无答案).docx
  • 人教版七年级生物上册3.2.1种子的萌发导学案(无答案).docx人教版七年级生物上册3.2.1种子的萌发导学案(无答案).docx
  • 人教版七年级生物上册3.1.2种子植物练习(含解析)教师用卷.docx人教版七年级生物上册3.1.2种子植物练习(含解析)教师用卷.docx
  • 人教版七年级生物上册3.1.1藻类蕨类苔藓植物同步练习.docx人教版七年级生物上册3.1.1藻类蕨类苔藓植物同步练习.docx
  • 人教版七年级生物上册3.1.1藻类、苔藓和蕨类植物导学案(无答案).docx人教版七年级生物上册3.1.1藻类、苔藓和蕨类植物导学案(无答案).docx
  • 人教版七年级生物上册2.2.3植物体的结构层次导学案(无答案).docx人教版七年级生物上册2.2.3植物体的结构层次导学案(无答案).docx
  • 人教版七年级生物上册2.2.2动物体的结构层次同步练习.docx人教版七年级生物上册2.2.2动物体的结构层次同步练习.docx
  • 人教版七年级生物上册2.1.3第三节 观察动物细胞 教学设计.docx人教版七年级生物上册2.1.3第三节 观察动物细胞 教学设计.docx
  • 人教版七年级生物上册2.1.3 动物细胞练习(含解析)教师用卷.docx人教版七年级生物上册2.1.3 动物细胞练习(含解析)教师用卷.docx
  • 人教版七年级生物上册2.1.1 练习使用显微镜练习(含解析)教师用卷.docx人教版七年级生物上册2.1.1 练习使用显微镜练习(含解析)教师用卷.docx
  • 人教版七年级生物上册1.2.3生物圈是最大的生态系统导学案(无答案).docx人教版七年级生物上册1.2.3生物圈是最大的生态系统导学案(无答案).docx
  • 人教版七年级生物上册1.2.2生物与环境组成生态系统练习(含解析)教师用卷.docx人教版七年级生物上册1.2.2生物与环境组成生态系统练习(含解析)教师用卷.docx
  • 人教版七年级生物上册1.1.1生物的特征练习(含解析)教师用卷.docx人教版七年级生物上册1.1.1生物的特征练习(含解析)教师用卷.docx
  • 人教版七年级生物上册2.1.3第三节 观察动物细胞 教学设计.docx人教版七年级生物上册2.1.3第三节 观察动物细胞 教学设计.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1