分享
分享赚钱 收藏 举报 版权申诉 / 40

类型专题1.7 二次函数(全章直通中考)(培优练)-2023-2024学年九年级数学上册全章复习与专题突破讲与练(浙教版).docx

  • 上传人:a****
  • 文档编号:830966
  • 上传时间:2025-12-16
  • 格式:DOCX
  • 页数:40
  • 大小:2.42MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题1.7 二次函数全章直通中考培优练-2023-2024学年九年级数学上册全章复习与专题突破讲与练浙教版 专题 1.7 二次 函数 直通 中考 培优练 2023 2024 学年 九年级 数学
    资源描述:

    1、专题1.7 二次函数(全章直通中考)(培优练)【要点回顾】【要点一】二次函数的解析式一般式:(a、b、c是常数,);顶点式:(),二次函数的顶点坐标是(h,k);交点式:(),其中x1,x2是图象与x轴交点的横坐标 【要点二】二次函数的图象与性质开口方向a0时,开口向上;a0时,顶点是最低点,此时y有最小值,最小值为0(或k或);a0x0(h或)时,y随x的增大而增大。即在对称轴的左边,y随x的增大而减小;在对称轴的右边,y随x的增大而增大。a0x0(h或)时,y随x的增大而减小。即在对称轴的左边,y随x的增大而增大;在对称轴的右边,y随x的增大而减小。对称性1.图象是轴对称图形;2. 抛物线

    2、上y值相等的两点,其中点必在对称轴上;3. 抛物线上到对称轴距离相等的点,y值必定相等.【要点三】二次函数的图象与各项系数之间的关系(1)的正负决定开口方向: ,抛物线开口向上;,抛物线开口向下.的大小决定开口的大小: 越大,抛物线的开口越小;越小,抛物线的开口越大.(2)、b的符号共同决定对称轴的位置当时,对称轴为y轴;当a、b同号时,对称轴在y轴左边;当a、b异号时,对称轴在y轴右边(简记为“左同右异”)(3)c决定抛物线与轴的交点的位置当c0时,抛物线与y轴的交点在正半轴上;当c0时,抛物线经过原点;当c0时,抛物线与y轴的交点在负半轴上.【要点四】二次函数图象的变换(1)图象的平移:任

    3、意抛物线ya(xh)2k可以由抛物线yax2经过平移得到,在原有函数的基础上“值正右移,负左移;值正上移,负下移”概括成八个字“左加右减,上加下减”具体平移方法如下:(2)图象的对称:化成顶点式,结合图像,求出对称后的顶点和开口方向,再写出对称后的解析式.【要点五】二次函数与一元二次方程二次函数()的图象与x轴交点的横坐标是一元二次方程的根.(1)当b24ac0时,抛物线与x轴有两个交点;(2)当b24ac0时,抛物线与x轴有一个交点;(3)当b24ac0时,抛物线与x轴没有交点.【要点六】二次函数与不等式(1)抛物线在x轴上方图象上的点的纵坐标都为正,所对应的x的所有值就是不等式的解集;(2

    4、)抛物线在x轴下方图象上的点的纵坐标均为负,所对应的x的所有值就是不等式的解集.【要点七】二次函数的应用(1)最大利润问题:求解最值时,一定要考虑顶点横坐标(对称轴)的取值是否在自变量的取值范围内.(2)面积问题:篱笆问题,铅锤法求面积.(3)类抛物线问题:拱桥、投桥、喷泉问题.(4)与几何图形结合:与三角形、圆等几何图形结合,考查最大面积或最小距离等问题一、单选题1(2022山东济南统考中考真题)抛物线与y轴交于点C,过点C作直线l垂直于y轴,将抛物线在y轴右侧的部分沿直线l翻折,其余部分保持不变,组成图形G,点,为图形G上两点,若,则m的取值范围是()A或 B C D2(2022四川成都统

    5、考中考真题)如图,二次函数的图像与轴相交于,两点,对称轴是直线,下列说法正确的是()A B当时,的值随值的增大而增大C点的坐标为 D3(2021内蒙古呼和浩特统考中考真题)已知二次项系数等于1的一个二次函数,其图象与x轴交于两点,且过,两点(b,a是实数),若,则的取值范围是()A B C D4(2021江苏宿迁统考中考真题)已知二次函数的图像如图所示,有下列结论:;0;不等式0的解集为13,正确的结论个数是()A1 B2 C3 D45(2022四川凉山统考中考真题)已知抛物线yax2bxc(a0)经过点(1,0)和点(0,3),且对称轴在y轴的左侧,则下列结论错误的是()Aa0Bab3C抛物

    6、线经过点(1,0)、D关于x的一元二次方程ax2bxc1有两个不相等的实数根6(2021四川广元统考中考真题)将二次函数的图象在x轴上方的部分沿x轴翻折后,所得新函数的图象如图所示当直线与新函数的图象恰有3个公共点时,b的值为()A或 B或 C或 D或7(2018辽宁抚顺中考真题)已知抛物线y=ax2+bx+c(02ab)与x轴最多有一个交点以下四个结论:abc0;该抛物线的对称轴在x=1的右侧;关于x的方程ax2+bx+c+1=0无实数根;2其中,正确结论的个数为()A1个 B2个 C3个 D4个8(2018贵州贵阳统考中考真题)已知二次函数y=x2+x+6及一次函数y=x+m,将该二次函数

    7、在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y=x+m与新图象有4个交点时,m的取值范围是()Am3 Bm2 C2m3 D6m29(2011新疆中考真题)竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at2+bt,其图象如图所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是( )A第3秒 B第3.5秒 C第4.2秒 D第6.5秒10(2017四川泸州中考真题)已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M

    8、的坐标为(,3),P是抛物线y=x2+1上一个动点,则PMF周长的最小值是( )A3 B4 C5 D6二、填空题11(2023内蒙古赤峰统考中考真题)如图,抛物线与x轴交于点A,B,与y轴交于点C,点在抛物线上,点E在直线上,若,则点E的坐标是 12(2014四川甘孜统考中考真题)已知抛物线y=x2k的顶点为P,与x轴交于点A,B,且ABP是正三角形,则k的值是 13(2019吉林长春统考中考真题)如图,在平面直角坐标系中,抛物线与轴交于点,过点作轴的平行线交抛物线于点为抛物线的顶点若直线交直线于点,且为线段的中点,则的值为 14(2013四川绵阳中考真题)二次函数y=ax2+bx+c的图象如

    9、图所示,给出下列结论:2a+b0;bac;若1mn1,则m+n;3|a|+|c|2|b|其中正确的结论是 (写出你认为正确的所有结论序号)15(2023湖北武汉统考中考真题)抛物线(是常数,)经过三点,且下列四个结论:;当时,若点在该抛物线上,则;若关于的一元二次方程有两个相等的实数根,则其中正确的是 (填写序号)16(2023浙江绍兴统考中考真题)在平面直角坐标系中,一个图形上的点都在一边平行于轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形例如:如图,函数的图象(抛物线中的实线部分),它的关联矩形为矩形若二次函数图象的关联矩形恰好也是矩形,则 17(2019四川广安统

    10、考中考真题)在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为,由此可知该生此次实心球训练的成绩为 米18(2022四川成都统考中考真题)距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度(米)与物体运动的时间(秒)之间满足函数关系,其图像如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒设表示0秒到秒时的值的“极差”(即0秒到秒时的最大值与最小值的差),则当时,的取值范围是 ;当时,的取值范围是 三、解答题19(2017江苏扬州中考真题)农经公司以30元/千克的价格收购一批农产品进行销售

    11、,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x(元/千克)3035404550日销售量p(千克)6004503001500(1)请直接写出p与x之间的函数关系式:(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a0)的相关费用,当40x45时,农经公司的日获利的最大值为2430元,求a的值20(2023湖南娄底中考真题)如图,抛物线过点、点,交y轴于点C(1)求b,c的值(2)点是抛物线上的动点当取何值时,的面积最大?并求出面积的最大值;过点P作轴,交于点E,再过

    12、点P作轴,交抛物线于点F,连接,问:是否存在点P,使为等腰直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由21(2023宁夏统考中考真题)如图,抛物线与轴交于,两点,与轴交于点已知点的坐标是,抛物线的对称轴是直线(1)直接写出点的坐标;(2)在对称轴上找一点,使的值最小求点的坐标和的最小值;(3)第一象限内的抛物线上有一动点,过点作轴,垂足为,连接交于点依题意补全图形,当的值最大时,求点的坐标22(2022贵州贵阳统考中考真题)已知二次函数y=ax2+4ax+b(1)求二次函数图象的顶点坐标(用含a,b的代数式表示);(2)在平面直角坐标系中,若二次函数的图象与x轴交于A,B两点,A

    13、B=6,且图象过(1,c),(3,d),(1,e),(3,f)四点,判断c,d,e,f的大小,并说明理由;(3)点M(m,n)是二次函数图象上的一个动点,当2m1时,n的取值范围是1n1,求二次函数的表达式23(2021内蒙古呼和浩特统考中考真题)已知抛物线(1)通过配方可以将其化成顶点式为_,根据该抛物线在对称轴两侧从左到右图象的特征,可以判断,当顶点在x轴_(填上方或下方),即_0(填大于或小于)时,该抛物线与x轴必有两个交点;(2)若抛物线上存在两点,分布在x轴的两侧,则抛物线顶点必在x轴下方,请你结合A、B两点在抛物线上的可能位置,根据二次函数的性质,对这个结论的正确性给以说明;(为了

    14、便于说明,不妨设且都不等于顶点的横坐标;另如果需要借助图象辅助说明,可自己画出简单示意图)(3)利用二次函数(1)(2)结论,求证:当,时,24(2022广西统考中考真题)已知抛物线与x轴交于A,B两点(点A在点B的左侧)(1)求点A,点B的坐标;(2)如图,过点A的直线与抛物线的另一个交点为C,点P为抛物线对称轴上的一点,连接,设点P的纵坐标为m,当时,求m的值;(3)将线段AB先向右平移1个单位长度,再向上平移5个单位长度,得到线段MN,若抛物线与线段MN只有一个交点,请直接写出a的取值范围参考答案1D【分析】求出抛物线的对称轴、C点坐标以及当x=m-1和x=m+1时的函数值,再根据m-1

    15、m+1,判断出M点在N点左侧,此时分类讨论:第一种情况,当N点在y轴左侧时,第二种情况,当M点在y轴的右侧时,第三种情况,当y轴在M、N点之间时,来讨论,结合图像即可求解解:抛物线解析式变形为:,即抛物线对称轴为,当x=m-1时,有,当x=m+1时,有,设(m-1,1)为A点,(m+1,1)为B点,即点A(m-1,1)与B(m+1,1)关于抛物线对称轴对称,当x=0时,有,C点坐标为,当x=m时,有,抛物线顶点坐标为,直线ly轴,直线l为,m-1m+1,M点在N点左侧,此时分情况讨论:第一种情况,当N点在y轴左侧时,如图,由图可知此时M、N点分别对应A、B点,即有,此时不符合题意;第二种情况,

    16、当M点在y轴的右侧时,如图,由图可知此时M、N点满足,此时不符合题意;第三种情况,当y轴在M、N点之间时,如图, 或者 ,由图可知此时M、N点满足,此时符合题意;此时由图可知:,解得,综上所述:m的取值范围为:,故选:D【点拨】本题考查了二次函数的图像与性质、翻折的性质,注重数形结合是解答本题的关键2D【分析】结合二次函数图像与性质,根据条件与图像,逐项判定即可解:A、根据图像可知抛物线开口向下,即,故该选项不符合题意;B、根据图像开口向下,对称轴为,当,随的增大而减小;当,随的增大而增大,故当时,随的增大而增大;当,随的增大而减小,故该选项不符合题意;C、根据二次函数的图像与轴相交于,两点,

    17、对称轴是直线,可得对称轴,解得,即,故该选项不符合题意;D、根据可知,当时,故该选项符合题意;故选:D【点拨】本题考查二次函数的图像与性质,根据图像得到抛物线开口向下,根据对称轴以及抛物线与轴交点得到是解决问题的关键3C【分析】根据题意列出二次函数的解析式,求出二次函数的最值,利用基本不等式,求出的范围解:由题意,二次函数与x轴交于两点,且二次项系数为1,则:过,两点, , 二次函数的二次项系数为1,对称轴为 二次函数图像开口朝上,且点,在对称轴的右侧又 故选C【点拨】本题考查了二次函数的解析式,二次函数的图像和性质,二次函数的配方法求最值,以及基本不等式的运用,(仅当时,等于号成立)能灵活的

    18、应用基本不等式是解题的关键4A【分析】根据抛物线的开口方向、于x轴的交点情况、对称轴的知识可判的正误,再根据函数图象的特征确定出函数的解析式,进而确定不等式,最后求解不等式即可判定解:抛物线的开口向上,a0,故正确;抛物线与x轴没有交点0,故错误由抛物线可知图象过(1,1),且过点(3,3)8a+2b=24a+b=1,故错误;由抛物线可知顶点坐标为(1,1),且过点(3,3)则抛物线与直线y=x交于这两点0可化为,根据图象,解得:1x3故错误故选A【点拨】本题主要考查了二次函数图象的特征以及解不等式的相关知识,灵活运用二次函数图象的特征成为解答本题的关键5C【分析】根据抛物线的图像与性质,根据

    19、各个选项的描述逐项判定即可得出结论解:A、根据抛物线yax2bxc(a0)经过点(1,0)和点(0,3),且对称轴在y轴的左侧可知,该说法正确,故该选项不符合题意;B、由抛物线yax2bxc(a0)经过点(1,0)和点(0,3)可知,解得,该说法正确,故该选项不符合题意;C、由抛物线yax2bxc(a0)经过点(1,0),对称轴在y轴的左侧,则抛物线不经过(1,0),该说法错误,故该选项符合题意;D、关于x的一元二次方程ax2bxc1根的情况,可以转化为抛物线yax2bxc(a0)与直线的交点情况,根据抛物线yax2bxc(a0)经过点(1,0)和点(0,3),结合抛物线开口向上,且对称轴在y

    20、轴的左侧可知抛物线yax2bxc(a0)与直线的有两个不同的交点,该说法正确,故该选项不符合题意;故选:C【点拨】本题考查二次函数的图像与性质,涉及到开口方向的判定、二次函数系数之间的关系、方程的根与函数图像交点的关系等知识点,根据题中条件得到抛物线草图是解决问题的关键6A【分析】由二次函数解析式,可求与x轴的两个交点A、B,直线表示的图像可看做是直线的图像平移b个单位长度得到,再结合所给函数图像可知,当平移直线经过B点时,恰与所给图像有三个交点,故将B点坐标代入即可求解;当平移直线经过C点时,恰与所给图像有三个交点,即直线与函数关于x轴对称的函数图像只有一个交点,即联立解析式得到的方程的判别

    21、式等于0,即可求解解:由知,当时,即解得:作函数的图像并平移至过点B时,恰与所给图像有三个交点,此时有:平移图像至过点C时,恰与所给图像有三个交点,即当时,只有一个交点当的函数图像由的图像关于x轴对称得到当时对应的解析式为即,整理得:综上所述或故答案是:A【点拨】本题主要考查二次函数翻折变化、交点个数问题、函数图像平移的性质、二次函数与一元二次方程的关系等知识,属于函数综合题,中等难度解题的关键是数形结合思想的运用,从而找到满足题意的条件7C【分析】由a0可知抛物线开口向上,再根据抛物线与x轴最多有一个交点可c0,由此可判断,根据抛物线的对称轴公式x=可判断,由ax2+bx+c0可判断出ax2

    22、+bx+c+110,从而可判断,由题意可得ab+c0,继而可得a+b+c2b,从而可判断.解:抛物线y=ax2+bx+c(02ab)与x轴最多有一个交点,抛物线与y轴交于正半轴,c0,abc0,故正确;02ab,1,1,该抛物线的对称轴在x=1的左侧,故错误;由题意可知:对于任意的x,都有y=ax2+bx+c0,ax2+bx+c+110,即该方程无解,故正确;抛物线y=ax2+bx+c(02ab)与x轴最多有一个交点,当x=1时,y0,ab+c0,a+b+c2b,b0,2,故正确,综上所述,正确的结论有3个,故选C【点拨】本题考查了二次函数的图象与性质,解题的关键是熟练运用二次函数的图象与系数

    23、的关系.8D【分析】如图,解方程x2+x+6=0得A(2,0),B(3,0),再利用折叠的性质求出折叠部分的解析式为y=(x+2)(x3),即y=x2x6(2x3),然后求出直线y=x+m经过点A(2,0)时m的值和当直线y=x+m与抛物线y=x2x6(2x3)有唯一公共点时m的值,从而得到当直线y=x+m与新图象有4个交点时,m的取值范围解:如图,当y=0时,x2+x+6=0,解得x1=2,x2=3,则A(2,0),B(3,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+2)(x3),即y=x2x6(2x3),当直线y=x+m经过点A(2,0)时,2+m=

    24、0,解得m=2;当直线y=x+m与抛物线y=x2x6(2x3)有唯一公共点时,方程x2x6=x+m有相等的实数解,解得m=6,所以当直线y=x+m与新图象有4个交点时,m的取值范围为6m2,故选D【点拨】本题考查了抛物线与几何变换,抛物线与x轴的交点等,把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程是解决此类问题常用的方法.9C【分析】根据函数的表达式,算出第2秒与第6秒时的高度,列出等式,求出a、b的关系,然后根据二次函数的性质,求出对称轴,进而得出最高点.解:由题意可知:h(2)=h(6),即4a+2b=36a+6b,解得b=8a

    25、,函数h=at2+bt的对称轴故在t=4s时,小球的高度最高,题中给的四个数据只有C第4.2秒最接近4秒,故在第4.2秒时小球最高故选C【点拨】本题考查二次函数的图象与性质.根据已知条件求出a、b的关系是解题的关键.10C解:过点M作MEx轴于点E,交抛物线y=x2+1于点P,此时PMF周长最小值, F(0,2)、M( ,3),ME=3,FM=2,PMF周长的最小值=ME+FM=3+2=5故选C【点拨】本题求线段和的最值问题,把需要求和的线段,找到相等的线段进行转化,转化后的线段共线时为最值情况11和【分析】先根据题意画出图形,先求出点坐标,当点在线段上时:是DCE的外角,而,所以此时,有,可

    26、求出所在直线的解析式,设点坐标,再根据两点距离公式,得到关于的方程,求解的值,即可求出点坐标;当点在线段的延长线上时,根据题中条件,可以证明,得到为直角三角形,延长至,取,此时,从而证明是要找的点,应为,为等腰直角三角形, 点和关于点对称,可以根据点坐标求出点坐标解:在中,当时,则有,令,则有,解得:,根据点坐标,有所以点坐标设所在直线解析式为,其过点、有,解得所在直线的解析式为:当点在线段上时,设而因为:,有解得:,所以点的坐标为: 当在的延长线上时,在中,,如图延长至,取,则有为等腰三角形,又则为符合题意的点,的横坐标:,纵坐标为;综上E点的坐标为:或,故答案为:或【点拨】本题考查了二次函

    27、数与一次函数综合应用,熟练掌握一次函数根二次函数的图象和性质,分情况找到点的位置,是求解此题的关键123解:如图,抛物线y=x2k的顶点为P,P点的坐标为:(0,k),抛物线y=x2k与x轴交于A、B两点,且ABP是正三角形,OA=OB,OPB=30,tan30=,OB=,点B的坐标为:,点B在抛物线y=x2k上,将B点代入y=x2k,得:整理得:解得:k1=0(不合题意舍去),k2=3故答案为3132【分析】先根据抛物线解析式求出点坐标和其对称轴,再根据对称性求出点坐标,利用点为线段中点,得出点坐标;用含的式子表示出点坐标,写出直线的解析式,再将点坐标代入即可求解出的值解:抛物线与轴交于点,

    28、抛物线的对称轴为顶点坐标为,点坐标为点为线段的中点,点坐标为设直线解析式为(为常数,且)将点代入得将点代入得解得故答案为2【点拨】考核知识点:抛物线与坐标轴交点问题.数形结合分析问题是关键.14【分析】根据抛物线的开口,对称轴即可判断,举例证明不成立,根据对称轴即可判断,根据当x=1时,a+b+c0,2a+b0,3a+2b+c0,即可判断解:抛物线开口向下,a02a0对称轴x=1,b2a,2a+b0故选项正确b2a,b2a0a,取符合“开口向下,与x轴的一个交点的横坐标在0与1之间,对称轴在直线x=1右侧”的特点的一函数,如,令,得由得当时,ac,ac,a= c都有可能故选项错误1mn1,2m

    29、+n2,抛物线对称轴为:x=1,2,m+n故选项正确当x=1时,a+b+c0,2a+b0,3a+2b+c0,3a+c2b3ac2ba0,b0,c0,3|a|+|c|=3ac2b=2|b|故选项正确综上所述,正确的结论是故答案为:【点拨】本题考查了二次函数图象与系数的关系,特殊元素法和反证法的应用是解题的关键15【分析】根据图象经过,且抛物线与x轴的一个交点一定在或的右侧,判断出抛物线的开口向下,再把代入得,即可判断错误;先得出抛物线的对称轴在直线的右侧,得出抛物线的顶点在点的右侧,得出,根据,即可得出,即可判断正确;先得出抛物线对称轴在直线的右侧,得出到对称轴的距离大于到对称轴的距离,根据,抛

    30、物线开口向下,距离抛物线越近的函数值越大,即可得出正确;根据方程有两个相等的实数解,得出,把代入得,即,求出,根据根与系数的关系得出,即,根据,得出,求出m的取值范围,即可判断正确解:图象经过,即抛物线与y轴的负半轴有交点,如果抛物线的开口向上,则抛物线与x轴的两个交点都在的左侧,中,抛物线与x轴的一个交点一定在或的右侧,抛物线的开口一定向下,即,把代入得,即,故错误;,方程的两个根的积大于0,即,即抛物线的对称轴在直线的右侧,抛物线的顶点在点的右侧,故正确;,当时,抛物线对称轴在直线的右侧,到对称轴的距离大于到对称轴的距离,抛物线开口向下,距离抛物线越近的函数值越大,故正确;方程可变为,方程

    31、有两个相等的实数解,把代入得,即,即,即,在抛物线上,n为方程的两个根,故正确;综上分析可知,正确的是故答案为:【点拨】本题主要考查了二次函数的图象和性质,解题的关键是熟练掌握二次函数的性质,根据已知条件判断得出抛物线开口向下16或【分析】根据题意求得点,根据题意分两种情况,待定系数法求解析式即可求解解:由,当时,四边形是矩形,当抛物线经过时,将点,代入,解得:当抛物线经过点时,将点,代入,解得:综上所述,或,故答案为:或【点拨】本题考查了待定系数法求抛物线解析式,理解新定义,最小矩形的限制条件是解题的关键1710【分析】根据铅球落地时,高度,把实际问题可理解为当时,求x的值即可解:当时,解得

    32、,(舍去),故答案为10【点拨】本题考查了二次函数的实际应用,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键18 【分析】根据题意,得-45+3m+n=0,确定m,n的值,从而确定函数的解析式,根据定义计算确定即可解:根据题意,得-45+3m+n=0, , ,解得m=50,m=10,当m=50时,n=-105;当m=10时,n=15;抛物线与y轴交于正半轴,n0,对称轴为t=1,a=-50,时,h随t的增大而增大,当t=1时,h最大,且(米);当t=0时,h最最小,且(米);w=,w的取值范围是,故答案为:当时,的取值范围是对称轴为t=1,a=-

    33、50,时,h随t的增大而减小,当t=2时,h=15米,且(米);当t=3时,h最最小,且(米);w=,w=,w的取值范围是,故答案为:【点拨】本题考查了待定系数法确定抛物线的解析式,函数的最值,增减性,对称性,新定义计算,熟练掌握函数的最值,增减性,理解新定义的意义是解的关键19(1);(2)这批农产品的销售价格定为40元,才能使日销售利润最大;(3)a的值为2【分析】(1)首先根据表中的数据,可猜想y与x是一次函数关系,任选两点求表达式,再验证猜想的正确性;(2)根据题意列出日销售利润w与销售价格x之间的函数关系式,根据二次函数的性质确定最大值即可;(3)根据题意列出日销售利润与销售价格x之

    34、间的函数关系式,并求得抛物线的对称轴,再分两种情况进行讨论,依据二次函数的性质求得a的值(1)解:由表格的数据可知:p与x成一次函数关系,设函数关系式为p=kx+b,则,解得:k=-30,b=1500,p=-30x+1500,所求的函数关系为p=-30x+1500;(2)解:设日销售利润w=p(x-30)=(-30x+1500)(x-30),即,-300,当x=40时,w有最大值3000元,故这批农产品的销售价格定为40元,才能使日销售利润最大;(3)解:日获利=p(x-30-a)=(-30x+1500)(x-30-a),即,对称轴为,若a10,则当x=45时,有最大值,即=2250-150a

    35、2430(不合题意);若0a10,则当x=40+a时,有最大值,将x=40+a代入,可得,当=2430时,解得=2,=38(舍去),综上所述,a的值为2【点拨】本题主要考查了二次函数的综合应用,解题时要利用图表中的信息,学会用待定系数法求解函数解析式,并将实际问题转化为求函数最值问题,从而来解决实际问题20(1),;(2)当时,的面积由最大值,最大值为;当点的坐标为或时,为等腰直角三角形【分析】(1)将将、代入抛物线即可求解;(2)由(1)可知:,得,可求得的解析式为,过点P作轴,交于点E,交轴于点,易得,根据的面积,可得的面积,即可求解;由题意可知抛物线的对称轴为,则,分两种情况:当点在对称

    36、轴左侧时,即时,当点在对称轴右侧时,即时,分别进行讨论求解即可(1)解:将、代入抛物线中,可得:,解得:,即:,;(2)由(1)可知:,当时,即,设的解析式为:,将,代入中,可得,解得:,的解析式为:,过点P作轴,交于点E,交轴于点,则,点E的横坐标也为,则纵坐标为,的面积,当时,的面积有最大值,最大值为;存在,当点的坐标为或时,为等腰直角三角形理由如下:由可知,由题意可知抛物线的对称轴为直线,轴,则,当点在对称轴左侧时,即时,当时,为等腰直角三角形,即:,整理得:,解得:(,不符合题意,舍去)此时,即点;当点在对称轴右侧时,即时,当时,为等腰直角三角形,即:,整理得:,解得:(,不符合题意,

    37、舍去)此时:,即点;综上所述,当点的坐标为或时,为等腰直角三角形【点拨】本题二次函数综合题,考查了利用待定系数法求函数解析式,二次函数的性质及图象上的点的特点,等腰直角三角形的性质,解本题的关键是表示出点的坐标,进行分类讨论21(1);(2)点,的最小值为;(3)【分析】(1)根据抛物线的对称性,进行求解即可;(2)根据抛物线的对称性,得到,得到当三点共线时,的值最小,为的长,求出直线的解析式,解析式与对称轴的交点即为点的坐标,两点间的距离公式求出的长,即为的最小值;(3)根据题意,补全图形,设,得到,将的最大值转化为二次函数求最值,即可得解(1)解:点关于对称轴的对称点为点,对称轴为直线,点

    38、为;(2)当时,连接,点关于对称轴的对称点为点,当三点共线时,的值最小,为的长,设直线的解析式为:,则:,解得:,点在抛物线的对称轴上,;点,的最小值为;(3)过点作轴,垂足为,连接交于点,如图所示,设抛物线的解析式为:,设,则:,由(2)知:直线:,当时,有最大值,此时【点拨】本题考查二次函数的综合应用正确的求出函数解析式,利用抛物线的对称性以及数形结合的思想进行求解,是解题的关键22(1)二次函数图象的顶点坐标为(-2,b-4a);(2)当a cd;当a0时,e=f cd;理由见分析;(3)二次函数的表达式为y=x2x-或y=x2x+【分析】(1)利用配方法即可求解;(2)由对称轴为直线x

    39、=-2,AB=6,得到A,B两点的坐标分别为(-5,0),(1,0),画出草图,分两种情况,利用数形结合求解即可;(3)分两种情况,利用数形结合求解即可(1)解:y=ax2+4ax+b=a(x2+4x+4-4)+b= a(x+2)2+b-4a,二次函数图象的顶点坐标为(-2,b-4a);(2)解:由(1)知二次函数的图象的对称轴为直线x=-2,又二次函数的图象与x轴交于A,B两点,AB=6,A,B两点的坐标分别为(-5,0),(1,0),当a cd;当a0时,画出草图如图:e=f cd;(3)解:点M(m,n)是二次函数图象上的一个动点,当a0时,根据题意:当m=-2时,函数有最小值为-1,当

    40、m=1时,函数值为1,即,解得:,二次函数的表达式为y=x2x-综上,二次函数的表达式为y=x2x-或y=x2x+【点拨】此题重点考查二次函数的图象与性质、用待定系数法求函数解析式等知识和方法,解第(2)(3)题时应注意分类讨论,求出所有符合条件的结果23(1);下方;(2)见分析;(3)见分析【分析】(1)利用配方法,把二次函数化为顶点式,结合二次函数的图像,即可得到答案;(2)把A,B两点位置分三种情况:当A,B都在对称轴左侧时,当A,B都在对称轴右侧时,当A,B在对称轴两侧时,分别进行讨论,即可;(3)令,结合由(1)(2)的结论,即可得到结论解:(1)通过配方可得:, a0,抛物线开口

    41、向上,当顶点在x轴下方时,即0时,该抛物线与x轴必有两个交点;故答案是:,下方, ;(2)若设且不等于顶点横坐标,则A,B两点位置可能有以下三种情况:当A,B都在对称轴左侧时,由于在对称轴左侧,抛物线开口向上,函数值随x的增大而减小,所以点A在x轴上方,点B在x轴下方,顶点M在点B下方,所以抛物线顶点必在x轴下方如图1所示当A,B都在对称轴右侧时,由于在对称轴右侧,抛物线开口向上,函数值随x的增大而增大,所以点B在x轴上方,点A在x轴下方,顶点M在点A下方,所以抛物线顶点必在x轴下方如图2所示当A,B在对称轴两侧时,由于A,B分布在x轴两侧,所以不管A,B哪个点在x轴下方,都可以根据抛物线的对

    42、称性将其中一个点对称到对称轴另一侧的抛物线上,同或,可以说明抛物线顶点必在x轴下方如图3所示(3)证明:令,当时,;当时,而上存在两点,分别位于x轴两侧由(1)(2)可知,顶点在x轴下方,即,又,即:【点拨】本题主要考查二次函数综合,掌握二次函数的顶点式,二次函数的图像和性质以及二次函数图像上点的坐标特征,是解题的关键24(1)A(-1,0),B(3,0);(2)-3;(3)或或【分析】(1)令,由抛物线解析式可得,解方程即可确定点A,点B的坐标;(2)由抛物线解析式确定其对称轴为,可知点P(1,m),再将直线l与抛物线解析式联立,解方程组可确定点C坐标,由列方程求解即可;(3)根据题意先确定

    43、点M(0,5)、N(4,5)可分和两种情况:当时,抛物线的顶点大于或等于5,把代入,y的值小于或等于5,从而求得结果;当时,将代入抛物线解析式,y的值大于或等于5,从而求得结果(1)解:抛物线解析式,令,可得,解得,故点A、B的坐标分别为A(-1,0),B(3,0);(2)对于抛物线,其对称轴为,点P为抛物线对称轴上的一点,且点P的纵坐标为m,P(1,m),将直线l与抛物线解析式联立,可得,可解得 或,故点C坐标为(4,-5),当时,可得,解得;(3)将线段AB先向右平移1个单位长度,再向上平移5个单位长度,得到线段MN,结合(1),可知M(0,5)、N(4,5),该抛物线的对称轴为,其顶点坐标为,当,即时,抛物线顶点在线段MN上,此时抛物线与线段MN只有一个交点;若抛物线顶点不在线段MN上,当时,如图1,结合抛物线的对称性,可知若与线段MN只有一个交点,则抛物线的顶点大于5,且时,y的值小于或等于5,时,y的值大于5,即,解得;当时,如图2,当时,若与线段MN只有一个交点,则当时,y的值大于或等于5,即,解得;综上所述,当抛物线与线段MN只有一个交点时,a的取值范围为或或【点拨】本题主要考查了二次函数的综合应用,包括求二次函数与x轴的交点、勾股定理的应用、利用二次函数解决图形问题等知识,解题关键是熟练运用数形结合和分类讨论的思想分析问题

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题1.7 二次函数(全章直通中考)(培优练)-2023-2024学年九年级数学上册全章复习与专题突破讲与练(浙教版).docx
    链接地址:https://www.ketangku.com/wenku/file-830966.html
    相关资源 更多
  • 人教版二年级数学上册期末模拟试卷带答案(满分必刷).docx人教版二年级数学上册期末模拟试卷带答案(满分必刷).docx
  • 人教版二年级数学上册期末模拟试卷带答案(培优b卷).docx人教版二年级数学上册期末模拟试卷带答案(培优b卷).docx
  • 人教版二年级数学上册期末模拟试卷带答案(a卷).docx人教版二年级数学上册期末模拟试卷带答案(a卷).docx
  • 人教版二年级数学上册期末模拟试卷带答案解析.docx人教版二年级数学上册期末模拟试卷带答案解析.docx
  • 人教版二年级数学上册期末模拟试卷带答案下载.docx人教版二年级数学上册期末模拟试卷带答案下载.docx
  • 人教版二年级数学上册期末模拟试卷带答案.docx人教版二年级数学上册期末模拟试卷带答案.docx
  • 人教版二年级数学上册期末模拟试卷完美版.docx人教版二年级数学上册期末模拟试卷完美版.docx
  • 人教版二年级数学上册期末模拟试卷完整版.docx人教版二年级数学上册期末模拟试卷完整版.docx
  • 人教版二年级数学上册期末模拟试卷完整.docx人教版二年级数学上册期末模拟试卷完整.docx
  • 人教版二年级数学上册期末模拟试卷学生专用.docx人教版二年级数学上册期末模拟试卷学生专用.docx
  • 人教版二年级数学上册期末模拟试卷含解析答案.docx人教版二年级数学上册期末模拟试卷含解析答案.docx
  • 人教版二年级数学上册期末模拟试卷含精品答案.docx人教版二年级数学上册期末模拟试卷含精品答案.docx
  • 人教版二年级数学上册期末模拟试卷含答案(黄金题型).docx人教版二年级数学上册期末模拟试卷含答案(黄金题型).docx
  • 人教版二年级数学上册期末模拟试卷含答案(预热题).docx人教版二年级数学上册期末模拟试卷含答案(预热题).docx
  • 人教版二年级数学上册期末模拟试卷含答案(达标题).docx人教版二年级数学上册期末模拟试卷含答案(达标题).docx
  • 人教版二年级数学上册期末模拟试卷含答案(轻巧夺冠).docx人教版二年级数学上册期末模拟试卷含答案(轻巧夺冠).docx
  • 人教版二年级数学上册期末模拟试卷含答案(能力提升).docx人教版二年级数学上册期末模拟试卷含答案(能力提升).docx
  • 人教版二年级数学上册期末模拟试卷含答案(综合题).docx人教版二年级数学上册期末模拟试卷含答案(综合题).docx
  • 人教版二年级数学上册期末模拟试卷含答案(综合卷).docx人教版二年级数学上册期末模拟试卷含答案(综合卷).docx
  • 人教版二年级数学上册期末模拟试卷含答案(精练).docx人教版二年级数学上册期末模拟试卷含答案(精练).docx
  • 人教版二年级数学上册期末模拟试卷含答案(突破训练).docx人教版二年级数学上册期末模拟试卷含答案(突破训练).docx
  • 人教版二年级数学上册期末模拟试卷含答案(研优卷).docx人教版二年级数学上册期末模拟试卷含答案(研优卷).docx
  • 人教版二年级数学上册期末模拟试卷含答案(满分必刷).docx人教版二年级数学上册期末模拟试卷含答案(满分必刷).docx
  • 人教版二年级数学上册期末模拟试卷含答案(模拟题).docx人教版二年级数学上册期末模拟试卷含答案(模拟题).docx
  • 人教版二年级数学上册期末模拟试卷含答案(最新).docx人教版二年级数学上册期末模拟试卷含答案(最新).docx
  • 人教版二年级数学上册期末模拟试卷含答案(新).docx人教版二年级数学上册期末模拟试卷含答案(新).docx
  • 人教版二年级数学上册期末模拟试卷含答案(巩固).docx人教版二年级数学上册期末模拟试卷含答案(巩固).docx
  • 人教版二年级数学上册期末模拟试卷含答案(完整版).docx人教版二年级数学上册期末模拟试卷含答案(完整版).docx
  • 人教版二年级数学上册期末模拟试卷含答案(夺分金卷).docx人教版二年级数学上册期末模拟试卷含答案(夺分金卷).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1