专题10 二次函数与平行四边形含矩形菱形正方形的存在性问题(原卷版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题10 二次函数与平行四边形含矩形菱形正方形的存在性问题原卷版 专题 10 二次 函数 平行四边形 矩形 菱形 正方形 存在 问题 原卷版
- 资源描述:
-
1、专题10 二次函数与平行四边形含矩形菱形正方形的存在性问题(原卷版)第一部分 典例剖析+变式训练类型一 二次函数与平行四边形的存在性问题典例1 (2022攀枝花)如图,二次函数yax2+bx+c的图象与x轴交于O(O为坐标原点),A两点,且二次函数的最小值为1,点M(1,m)是其对称轴上一点,y轴上一点B(0,1)(1)求二次函数的表达式;(2)二次函数在第四象限的图象上有一点P,连结PA,PB,设点P的横坐标为t,PAB的面积为S,求S与t的函数关系式;(3)在二次函数图象上是否存在点N,使得以A、B、M、N为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点N的坐标,若不存在,请说
2、明理由变式训练1(2022贵港模拟)如图,抛物线yax2+bx+6与x轴交于A,B两点,与y轴交于点C,已知点A坐标为(2,0),点B坐标为(6,0)对称轴l与x轴交于点F,P是直线BC上方抛物线上一动点,连接PB,PC(1)求抛物线的表达式;(2)当四边形ACPB面积最大时,求点P的坐标;(3)在(2)的条件下,连接PF,E是x轴上一动点,在抛物线上是否存在点Q,使得以F、P、E、Q为顶点的四边形是平行四边形若存在,请直接写出点Q的坐标;若不存在,说明理由类型二 二次函数与矩形存在性问题典例2(2022绥化)如图,抛物线yax2+bx+c交y轴于点A(0,4),并经过点C(6,0),过点A作
3、ABy轴交抛物线于点B,抛物线的对称轴为直线x2,D点的坐标为(4,0),连接AD,BC,BD点E从A点出发,以每秒2个单位长度的速度沿着射线AD运动,设点E的运动时间为m秒,过点E作EFAB于F,以EF为对角线作正方形EGFH(1)求抛物线的解析式;(2)当点G随着E点运动到达BC上时,求此时m的值和点G的坐标;(3)在运动的过程中,是否存在以B,G,C和平面内的另一点为顶点的四边形是矩形,如果存在,直接写出点G的坐标,如果不存在,请说明理由变式训练1(2022黔西南州)如图,在平面直角坐标系中,经过点A(4,0)的直线AB与y轴交于点B(0,4)经过原点O的抛物线yx2+bx+c交直线AB
4、于点A,C,抛物线的顶点为D(1)求抛物线yx2+bx+c的表达式;(2)M是线段AB上一点,N是抛物线上一点,当MNy轴且MN2时,求点M的坐标;(3)P是抛物线上一动点,Q是平面直角坐标系内一点是否存在以点A,C,P,Q为顶点的四边形是矩形?若存在,直接写出点Q的坐标;若不存在,请说明理由类型三 二次函数与菱形的存在性问题典例3(2022烟台)如图,已知直线y=43x+4与x轴交于点A,与y轴交于点C,抛物线yax2+bx+c经过A,C两点,且与x轴的另一个交点为B,对称轴为直线x1(1)求抛物线的表达式;(2)D是第二象限内抛物线上的动点,设点D的横坐标为m,求四边形ABCD面积S的最大
5、值及此时D点的坐标;(3)若点P在抛物线对称轴上,是否存在点P,Q,使以点A,C,P,Q为顶点的四边形是以AC为对角线的菱形?若存在,请求出P,Q两点的坐标;若不存在,请说明理由变式训练1(2022朝阳)如图,在平面直角坐标系中,抛物线yax2+2x+c与x轴分别交于点A(1,0)和点B,与y轴交于点C(0,3),连接BC(1)求抛物线的解析式及点B的坐标(2)如图,点P为线段BC上的一个动点(点P不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,求线段PQ长度的最大值(3)动点P以每秒2个单位长度的速度在线段BC上由点C向点B运动,同时动点M以每秒1个单位长度的速度在线段BO上由点B向
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
