分享
分享赚钱 收藏 举报 版权申诉 / 14

类型专题14 不等式(教师版).docx

  • 上传人:a****
  • 文档编号:832083
  • 上传时间:2025-12-16
  • 格式:DOCX
  • 页数:14
  • 大小:779.41KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题14 不等式教师版 专题 14 不等式 教师版
    资源描述:

    1、专题14 不等式1【2022年全国乙卷】若x,y满足约束条件x+y2,x+2y4,y0,则z=2x-y的最大值是()A-2B4C8D12【答案】C【解析】【分析】作出可行域,数形结合即可得解.【详解】由题意作出可行域,如图阴影部分所示,转化目标函数z=2x-y为y=2x-z,上下平移直线y=2x-z,可得当直线过点(4,0)时,直线截距最小,z最大,所以zmax=24-0=8.故选:C.2【2021年乙卷文科】若满足约束条件则的最小值为()A18B10C6D4【答案】C【解析】【分析】由题意作出可行域,变换目标函数为,数形结合即可得解.【详解】由题意,作出可行域,如图阴影部分所示,由可得点,转

    2、换目标函数为,上下平移直线,数形结合可得当直线过点时,取最小值,此时.故选:C.3【2021年乙卷文科】下列函数中最小值为4的是()ABCD【答案】C【解析】【分析】根据二次函数的性质可判断选项不符合题意,再根据基本不等式“一正二定三相等”,即可得出不符合题意,符合题意【详解】对于A,当且仅当时取等号,所以其最小值为,A不符合题意;对于B,因为,当且仅当时取等号,等号取不到,所以其最小值不为,B不符合题意;对于C,因为函数定义域为,而,当且仅当,即时取等号,所以其最小值为,C符合题意;对于D,函数定义域为,而且,如当,D不符合题意故选:C【点睛】本题解题关键是理解基本不等式的使用条件,明确“一

    3、正二定三相等”的意义,再结合有关函数的性质即可解出4【2020年新课标3卷文科】已知函数f(x)=sinx+,则()Af(x)的最小值为2Bf(x)的图象关于y轴对称Cf(x)的图象关于直线对称Df(x)的图象关于直线对称【答案】D【解析】【分析】根据基本不等式使用条件可判断A;根据奇偶性可判断B;根据对称性判断C,D.【详解】可以为负,所以A错;关于原点对称;故B错;关于直线对称,故C错,D对故选:D【点睛】本题考查函数定义域与最值、奇偶性、对称性,考查基本分析判断能力,属中档题.5【2019年新课标2卷理科】若ab,则Aln(ab)0B3a0Dab【答案】C【解析】【分析】本题也可用直接法

    4、,因为,所以,当时,知A错,因为是增函数,所以,故B错;因为幂函数是增函数,所以,知C正确;取,满足,知D错【详解】取,满足,知A错,排除A;因为,知B错,排除B;取,满足,知D错,排除D,因为幂函数是增函数,所以,故选C【点睛】本题主要考查对数函数性质、指数函数性质、幂函数性质及绝对值意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断6【2022年新高考2卷】若x,y满足x2+y2-xy=1,则()Ax+y1Bx+y-2Cx2+y22Dx2+y21【答案】BC【解析】【分析】根据基本不等式或者取特值即可判断各选项的真假【详解】因为aba+b22a2+b22(a,bR),由x2+y2-

    5、xy=1可变形为,x+y2-1=3xy3x+y22,解得-2x+y2,当且仅当x=y=-1时,x+y=-2,当且仅当x=y=1时,x+y=2,所以A错误,B正确;由x2+y2-xy=1可变形为x2+y2-1=xyx2+y22,解得x2+y22,当且仅当x=y=1时取等号,所以C正确;因为x2+y2-xy=1变形可得x-y22+34y2=1,设x-y2=cos,32y=sin,所以x=cos+13sin,y=23sin,因此x2+y2=cos2+53sin2+23sincos=1+13sin2-13cos2+13=43+23sin2-623,2,所以当x=33,y=-33时满足等式,但是x2+y

    6、21不成立,所以D错误故选:BC7【2020年新高考1卷(山东卷)】已知a0,b0,且a+b=1,则()ABCD【答案】ABD【解析】【分析】根据,结合基本不等式及二次函数知识进行求解.【详解】对于A,当且仅当时,等号成立,故A正确;对于B,所以,故B正确;对于C,当且仅当时,等号成立,故C不正确;对于D,因为,所以,当且仅当时,等号成立,故D正确;故选:ABD【点睛】本题主要考查不等式的性质,综合了基本不等式,指数函数及对数函数的单调性,侧重考查数学运算的核心素养.8【2020年新课标1卷理科】若x,y满足约束条件则z=x+7y的最大值为_.【答案】1【解析】【分析】首先画出可行域,然后结合

    7、目标函数的几何意义即可求得其最大值.【详解】绘制不等式组表示的平面区域如图所示,目标函数即:,其中z取得最大值时,其几何意义表示直线系在y轴上的截距最大,据此结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A的坐标为:,据此可知目标函数的最大值为:.故答案为:1【点睛】求线性目标函数zaxby(ab0)的最值,当b0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.9【2020年新课标2卷文科】若x,y满足约束条件则的最大值是_【答案】【解析】【分析】在平面

    8、直角坐标系内画出不等式组表示的平面区域,然后平移直线,在平面区域内找到一点使得直线在纵轴上的截距最大,求出点的坐标代入目标函数中即可.【详解】不等式组表示的平面区域为下图所示:平移直线,当直线经过点时,直线在纵轴上的截距最大,此时点的坐标是方程组的解,解得:,因此的最大值为:.故答案为:.【点睛】本题考查了线性规划的应用,考查了数形结合思想,考查数学运算能力.10【2020年新课标3卷理科】若x,y满足约束条件 ,则z=3x+2y的最大值为_【答案】7【解析】【分析】作出可行域,利用截距的几何意义解决.【详解】不等式组所表示的可行域如图因为,所以,易知截距越大,则越大,平移直线,当经过A点时截

    9、距最大,此时z最大,由,得,所以.故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.11【2020年新课标3卷理科】关于函数f(x)=有如下四个命题:f(x)的图象关于y轴对称f(x)的图象关于原点对称f(x)的图象关于直线x=对称f(x)的最小值为2其中所有真命题的序号是_【答案】【解析】【分析】利用特殊值法可判断命题的正误;利用函数奇偶性的定义可判断命题的正误;利用对称性的定义可判断命题的正误;取可判断命题的正误.综合可得出结论.【详解】对于命题,则,所以,函数的图象不关于轴对称,命题错误;对于命题,函数的定义域为,定

    10、义域关于原点对称,所以,函数的图象关于原点对称,命题正确;对于命题,则,所以,函数的图象关于直线对称,命题正确;对于命题,当时,则,命题错误.故答案为:.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.12【2019年新课标2卷文科】若变量x,y满足约束条件则z=3xy的最大值是_.【答案】9.【解析】【分析】作出可行域,平移找到目标函数取到最大值的点,求出点的坐标,代入目标函数可得.【详解】画出不等式组表示的可行域,如图所示,阴影部分表示的三角形ABC区域,根据直线中的表示纵截距的相反数,当直线过点时,取最大值为9【点睛】本题考查线性规划中最大值

    11、问题,渗透了直观想象、逻辑推理和数学运算素养采取图解法,利用数形结合思想解题搞不清楚线性目标函数的几何意义致误,从线性目标函数对应直线的截距观察可行域,平移直线进行判断取最大值还是最小值13【2018年新课标1卷理科】若,满足约束条件,则的最大值为_【答案】6【解析】【分析】首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式,之后在图中画出直线,在上下移动的过程中,结合的几何意义,可以发现直线过B点时取得最大值,联立方程组,求得点B的坐标代入目标函数解析式,求得最大值.【详解】根据题中所给的约束条件,画出其对应的可行域,如图所示:由,可得,画出直线,将其上下移动,结合的几何意

    12、义,可知当直线在y轴截距最大时,z取得最大值,由,解得,此时,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.14【2018年新课标2卷理科】若满足约束条件 则的最大值为_【答案】【解析】【分析】作出可行域,根据目标函数的几何意义可知当时,.【详解】不等式组表示的可行域是以为顶点的三角形区域,如下图所示,目标函数的最大值必在顶点处取得,易知当时,.【点睛】线性规划问题是高考中常考考点,主要以选择及填空的形式出现,基本题型为给出约束条件求目标函数的最值,主要结合方式有:截距型、斜率型、距离型等.15【2018年新课标3卷文科】若变量满足约束条件则的最大值是_【答案】3【解析】【详解】作出可行域平移直线,由图可知目标函数在直线与的交点处取得最大值3故答案为3.点睛:本题考查线性规划的简单应用,属于基础题

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题14 不等式(教师版).docx
    链接地址:https://www.ketangku.com/wenku/file-832083.html
    相关资源 更多
  • 人教版数学一年级上学期期末综合素养练习题及答案(夺冠).docx人教版数学一年级上学期期末综合素养练习题及答案(夺冠).docx
  • 人教版数学一年级上学期期末综合素养练习题及答案(夺冠系列).docx人教版数学一年级上学期期末综合素养练习题及答案(夺冠系列).docx
  • 人教版数学一年级上学期期末综合素养练习题及答案免费.docx人教版数学一年级上学期期末综合素养练习题及答案免费.docx
  • 人教版数学一年级上学期期末综合素养练习题及答案下载.docx人教版数学一年级上学期期末综合素养练习题及答案下载.docx
  • 人教版数学一年级上学期期末综合素养练习题及答案一套.docx人教版数学一年级上学期期末综合素养练习题及答案一套.docx
  • 人教版数学一年级上学期期末综合素养练习题及答案1套.docx人教版数学一年级上学期期末综合素养练习题及答案1套.docx
  • 人教版数学一年级上学期期末综合素养练习题及参考答案(黄金题型).docx人教版数学一年级上学期期末综合素养练习题及参考答案(黄金题型).docx
  • 人教版数学一年级上学期期末综合素养练习题及参考答案(预热题).docx人教版数学一年级上学期期末综合素养练习题及参考答案(预热题).docx
  • 人教版数学一年级上学期期末综合素养练习题及参考答案(精练).docx人教版数学一年级上学期期末综合素养练习题及参考答案(精练).docx
  • 人教版数学一年级上学期期末综合素养练习题及参考答案(研优卷).docx人教版数学一年级上学期期末综合素养练习题及参考答案(研优卷).docx
  • 人教版数学一年级上学期期末综合素养练习题及参考答案(新).docx人教版数学一年级上学期期末综合素养练习题及参考答案(新).docx
  • 人教版数学一年级上学期期末综合素养练习题及参考答案(夺分金卷).docx人教版数学一年级上学期期末综合素养练习题及参考答案(夺分金卷).docx
  • 人教版数学一年级上学期期末综合素养练习题及参考答案(典型题).docx人教版数学一年级上学期期末综合素养练习题及参考答案(典型题).docx
  • 人教版数学一年级上学期期末综合素养练习题及参考答案一套.docx人教版数学一年级上学期期末综合素养练习题及参考答案一套.docx
  • 人教版数学一年级上学期期末综合素养练习题及参考答案1套.docx人教版数学一年级上学期期末综合素养练习题及参考答案1套.docx
  • 人教版数学一年级上学期期末综合素养练习题及一套完整答案.docx人教版数学一年级上学期期末综合素养练习题及一套完整答案.docx
  • 人教版数学一年级上学期期末综合素养练习题及1套参考答案.docx人教版数学一年级上学期期末综合素养练习题及1套参考答案.docx
  • 人教版数学一年级上学期期末综合素养练习题加下载答案.docx人教版数学一年级上学期期末综合素养练习题加下载答案.docx
  • 人教版数学一年级上学期期末综合素养练习题全面.docx人教版数学一年级上学期期末综合素养练习题全面.docx
  • 人教版数学一年级上学期期末综合素养练习题免费答案.docx人教版数学一年级上学期期末综合素养练习题免费答案.docx
  • 人教版数学一年级上学期期末综合素养练习题免费下载答案.docx人教版数学一年级上学期期末综合素养练习题免费下载答案.docx
  • 人教版数学一年级上学期期末综合素养练习题ab卷.docx人教版数学一年级上学期期末综合素养练习题ab卷.docx
  • 人教版数学一年级上学期期末综合素养练习题a4版可打印.docx人教版数学一年级上学期期末综合素养练习题a4版可打印.docx
  • 人教版数学一年级上学期期末综合素养提升卷(黄金题型).docx人教版数学一年级上学期期末综合素养提升卷(黄金题型).docx
  • 人教版数学一年级上学期期末综合素养提升卷(达标题).docx人教版数学一年级上学期期末综合素养提升卷(达标题).docx
  • 人教版数学一年级上学期期末综合素养提升卷(能力提升).docx人教版数学一年级上学期期末综合素养提升卷(能力提升).docx
  • 人教版数学一年级上学期期末综合素养提升卷(考试直接用).docx人教版数学一年级上学期期末综合素养提升卷(考试直接用).docx
  • 人教版数学一年级上学期期末综合素养提升卷(综合卷).docx人教版数学一年级上学期期末综合素养提升卷(综合卷).docx
  • 人教版数学一年级上学期期末综合素养提升卷(真题汇编).docx人教版数学一年级上学期期末综合素养提升卷(真题汇编).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1