分享
分享赚钱 收藏 举报 版权申诉 / 10

类型专题14 线段定值问题-2022年中考数学之二次函数重点题型专题(全国通用版)(原卷版).docx

  • 上传人:a****
  • 文档编号:832190
  • 上传时间:2025-12-16
  • 格式:DOCX
  • 页数:10
  • 大小:556.93KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题14 线段定值问题-2022年中考数学之二次函数重点题型专题全国通用版原卷版 专题 14 线段 问题 2022 年中 数学 二次 函数 重点 题型 全国 通用版 原卷版
    资源描述:

    1、专题14 线段定值问题1(2021福建龙岩中考二模)抛物线经过点,直线过点,点是抛物线上点,间的动点(不含端点,),过作轴于点,连接,(1)求抛物线与直线的解析式:(2)求证:为定值;(3)若的面积为1,求满足条件的点的坐标2(2020湖南长沙市中考一模)如图,在平面直角坐标系中,抛物线y=ax2+2ax+a+2与x轴相交于A、B两点,与y轴交于点C,顶点为点D点P为x轴上的一个动点(1)求点D的坐标;(2)如图1,当点P在线段AB上运动时,过点P作x轴的垂线,分别交直线AD、BD于点E、F,试判断PE+PF是否为定值,若是,请求出这个定值,若不是,请说明理由(3)如图2,若点P位于点A的左侧

    2、,满足ADP=2APD且AP=AB时,求抛物线的解析式3(2020湖北武汉中考三模)如图1,抛物线yax2过定点M(,),与直线AB:ykx+1相交于A、B两点(1)若k,求ABO的面积(2)若k,在抛物线上的点P,使得ABP的面积是ABO面积的两倍,求P点坐标(3)将抛物线向右平移两个单位,再向下平移两个单位,得到抛物线C2,如题图2,直线ykx2(k+)与抛物线C2的对称轴交点为G,与抛物线C2的交点为P、Q两点(点P在点Q的左侧),试探究是否为定值,并说明理由4(2021湖北武汉实外九年级月考)已知,如图,抛物线yx2+bx+c与x轴正半轴交于A、B两点,与y轴交于点C,直线yx2经过A

    3、、C两点(1)直接写出抛物线的解析式;(2)P为抛物线上一点,若点P关于直线AC的对称点Q落在y轴上,求P点坐标;(3)现将抛物线平移,保持顶点在直线yx,若平移后的抛物线与直线yx2交于M、N两点求证:MN的长度为定值;结合(2)的条件,直接写出QMN的周长的最小值 5(2020湖南长郡中学九年级期中)如图,抛物线yx2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,3)(1)求抛物线的函数表达式;(2)如图1,连接AC,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N请问DM+DN是否为定值?如果是,请

    4、求出这个定值;如果不是,请说明理由(3)如图2,点P为抛物线上一动点,且满足PAB2ACO求点P的坐标6(2021江苏南通市九年级月考)如图1,抛物线yax22ax3a(a0)与x轴交于点A,B与y轴交于点C连接AC,BC已知ABC的面积为2(1)求抛物线的解析式;(2)平行于x轴的直线与抛物线从左到右依次交于P,Q两点过P,Q向x轴作垂线,垂足分别为G,H若四边形PGHQ为正方形,求正方形的边长;(3)如图2,平行于y轴的直线交抛物线于点M,交x轴于点N (2,0)点D是抛物线上A,M之间的一动点,且点D不与A,M重合,连接DB交MN于点E连接AD并延长交MN于点F在点D运动过程中,3NE+

    5、NF是否为定值?若是,求出这个定值;若不是,请说明理由7(2020广东广州市九年级月考)如图,在平面直角坐标系xOy中,一次函数(为常数)的图象与x轴交于点A(,0),与y轴交于点C以直线x=1为对称轴的抛物线(为常数,且0)经过A,C两点,并与x轴的正半轴交于点B(1)求的值及抛物线的函数表达式;(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P是抛物线对称轴上使ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交

    6、抛物线于,两点,试探究是否为定值,并写出探究过程8(2020广东廉江市九年级月考)如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点(A在B的左侧),且OA=3,OB=1,与y轴交于C(0,3),抛物线的顶点坐标为D(1,4)(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)过点D作直线DEy轴,交x轴于点E,点P是抛物线上B、D两点间的一个动点(点P不与B、D两点重合),PA、PB与直线DE分别交于点F、G,当点P运动时,EF+EG是否为定值?若是,试求出该定值;若不是,请说明理由9(广东广州市南沙区中考一模)在平面直角坐标系中,已知正方形的顶点的坐标为,点的坐标为

    7、,顶点在第一象限内,抛物线(常数)的顶点为正方形对角线上一动点(1)当抛物线经过两点时,求抛物线的解析式;(2)若抛物线与直线相交于另一点(非抛物线顶点,且在第一象限内),求证:长是定值;(3)根据(2)的结论,取的中点,求的最小值10(2021河北保定中考一模)如图,抛物线(,为常数且)经过点,顶点为,经过点的直线与轴平行,且与交于点,(在的右侧),与的对称轴交于点,直线经过点(1)用表示及点的坐标;(2)的值是否是定值?若是,请求出这个定值;若不是,请说明理由;(3)当直线经过点时,求的值及点,的坐标;(4)当时,设的外心为点,则求点的坐标;若点在的对称轴上,其纵坐标为,且满足,直接写出的

    8、取值范围11(2021黑龙江大庆中考真题)如图,抛物线与轴交于除原点和点,且其顶点关于轴的对称点坐标为(1)求抛物线的函数表达式;(2)抛物线的对称轴上存在定点,使得抛物线上的任意一点到定点的距离与点到直线的距离总相等证明上述结论并求出点的坐标;过点的直线与抛物线交于两点证明:当直线绕点旋转时,是定值,并求出该定值;(3)点是该抛物线上的一点,在轴,轴上分别找点,使四边形周长最小,直接写出的坐标12(2021北京北大附中九年级期末)如图1,抛物线M1:yx2+4x交x正半轴于点A,将抛物线M1先向右平移3个单位,再向上平移3个单位得到抛物线M2,M1与M2交于点B,直线OB交M2于点C(1)求

    9、抛物线M2的解析式;(2)点P是抛物线M1上AB间的一点,作PQx轴交抛物线M2于点Q,连接CP,CQ设点P的横坐标为m,当m为何值时,使CPQ的面积最大,并求出最大值;(3)如图2,将直线OB向下平移,交抛物线M1于点E,F,交抛物线M2于点G,H,则的值是否为定值,证明你的结论13如图1,在平面直角坐标系中,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,顶点为D,对称轴交x轴于点E 图1 图2 图3(1)求抛物线的解析式、对称轴及顶点D的坐标(2)判断的形状,并说明理由(用三种不同的方法)(3)如图2,在抛物线上有一动点P,过点P作轴于点M,交直线AC于点N,在线段PN、

    10、MN中,若其中一条线段是另一条线段的2倍,求点P的坐标(4)在抛物线上是否存在一点P,使,若存在,求出点P的坐标;若不存在,说明理由 (5)如图3,在抛物线的对称轴上的一点,过点H的任一条与y轴不平行的直线l交抛物线于点M、N,说明是否为定值?若是定值,请求出这个定值,若不是,请说明理由14(2021湖南长沙麓山国际实验学校九年级月考)如图1,在平面直角坐标系xOy中,抛物线yax2+bx+c与x轴分别相交于A、B两点,与y轴相交于点C,下表给出了这条抛物线上部分点(x,y)的坐标值:x-10123y03430(1)求出这条抛物线的解析式;(2)如图1,直线与抛物线交于P,Q两点,交抛物线对称轴于点T,若QMT的面积是PMT面积的两倍,求k的值;(3)如图2,点D是第四象限内抛物线上一动点,过点D作DFx轴,垂足为F,ABD的外接圆与DF相交于点E试问:线段EF的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题14 线段定值问题-2022年中考数学之二次函数重点题型专题(全国通用版)(原卷版).docx
    链接地址:https://www.ketangku.com/wenku/file-832190.html
    相关资源 更多
  • 人教版数学一年级(上册)期末综合素养提升题答案免费.docx人教版数学一年级(上册)期末综合素养提升题答案免费.docx
  • 人教版数学一年级(上册)期末综合素养提升题有精品答案.docx人教版数学一年级(上册)期末综合素养提升题有精品答案.docx
  • 人教版数学一年级(上册)期末综合素养提升题最新.docx人教版数学一年级(上册)期末综合素养提升题最新.docx
  • 人教版数学一年级(上册)期末综合素养提升题必考题.docx人教版数学一年级(上册)期末综合素养提升题必考题.docx
  • 人教版数学一年级(上册)期末综合素养提升题带答案(预热题).docx人教版数学一年级(上册)期末综合素养提升题带答案(预热题).docx
  • 人教版数学一年级(上册)期末综合素养提升题带答案(综合卷).docx人教版数学一年级(上册)期末综合素养提升题带答案(综合卷).docx
  • 人教版数学一年级(上册)期末综合素养提升题带答案(模拟题).docx人教版数学一年级(上册)期末综合素养提升题带答案(模拟题).docx
  • 人教版数学一年级(上册)期末综合素养提升题带答案(基础题).docx人教版数学一年级(上册)期末综合素养提升题带答案(基础题).docx
  • 人教版数学一年级(上册)期末综合素养提升题带答案(培优).docx人教版数学一年级(上册)期末综合素养提升题带答案(培优).docx
  • 人教版数学一年级(上册)期末综合素养提升题带下载答案.docx人教版数学一年级(上册)期末综合素养提升题带下载答案.docx
  • 人教版数学一年级(上册)期末综合素养提升题完美版.docx人教版数学一年级(上册)期末综合素养提升题完美版.docx
  • 人教版数学一年级(上册)期末综合素养提升题完整.docx人教版数学一年级(上册)期末综合素养提升题完整.docx
  • 人教版数学一年级(上册)期末综合素养提升题学生专用.docx人教版数学一年级(上册)期末综合素养提升题学生专用.docx
  • 人教版数学一年级(上册)期末综合素养提升题含解析答案.docx人教版数学一年级(上册)期末综合素养提升题含解析答案.docx
  • 人教版数学一年级(上册)期末综合素养提升题含答案(达标题).docx人教版数学一年级(上册)期末综合素养提升题含答案(达标题).docx
  • 人教版数学一年级(上册)期末综合素养提升题含答案(能力提升).docx人教版数学一年级(上册)期末综合素养提升题含答案(能力提升).docx
  • 人教版数学一年级(上册)期末综合素养提升题含答案(考试直接用).docx人教版数学一年级(上册)期末综合素养提升题含答案(考试直接用).docx
  • 人教版数学一年级(上册)期末综合素养提升题含答案(研优卷).docx人教版数学一年级(上册)期末综合素养提升题含答案(研优卷).docx
  • 人教版数学一年级(上册)期末综合素养提升题含答案(名师推荐).docx人教版数学一年级(上册)期末综合素养提升题含答案(名师推荐).docx
  • 人教版数学一年级(上册)期末综合素养提升题含答案解析.docx人教版数学一年级(上册)期末综合素养提升题含答案解析.docx
  • 人教版数学一年级(上册)期末综合素养提升题含答案下载.docx人教版数学一年级(上册)期末综合素养提升题含答案下载.docx
  • 人教版数学一年级(上册)期末综合素养提升题含答案【轻巧夺冠】.docx人教版数学一年级(上册)期末综合素养提升题含答案【轻巧夺冠】.docx
  • 人教版数学一年级(上册)期末综合素养提升题含答案【考试直接用】.docx人教版数学一年级(上册)期末综合素养提升题含答案【考试直接用】.docx
  • 人教版数学一年级(上册)期末综合素养提升题含答案【满分必刷】.docx人教版数学一年级(上册)期末综合素养提升题含答案【满分必刷】.docx
  • 人教版数学一年级(上册)期末综合素养提升题含答案【巩固】.docx人教版数学一年级(上册)期末综合素养提升题含答案【巩固】.docx
  • 人教版数学一年级(上册)期末综合素养提升题含答案【基础题】.docx人教版数学一年级(上册)期末综合素养提升题含答案【基础题】.docx
  • 人教版数学一年级(上册)期末综合素养提升题含答案【培优】.docx人教版数学一年级(上册)期末综合素养提升题含答案【培优】.docx
  • 人教版数学一年级(上册)期末综合素养提升题含答案【培优a卷】.docx人教版数学一年级(上册)期末综合素养提升题含答案【培优a卷】.docx
  • 人教版数学一年级(上册)期末综合素养提升题含答案【名师推荐】.docx人教版数学一年级(上册)期末综合素养提升题含答案【名师推荐】.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1