分享
分享赚钱 收藏 举报 版权申诉 / 15

类型专题16利用导数证明不等式-2021年新高考数学基础考点一轮复习.docx

  • 上传人:a****
  • 文档编号:832448
  • 上传时间:2025-12-16
  • 格式:DOCX
  • 页数:15
  • 大小:53.33KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题16 利用导数证明不等式-2021年新高考数学基础考点一轮复习 专题 16 利用 导数 证明 不等式 2021 新高 数学 基础 考点 一轮 复习
    资源描述:

    1、专题16 利用导数证明不等式一、利用导数证明不等式方法一:移项补充构造法例1、(2020江西赣州模拟)已知函数f(x)1,g(x)bx,若曲线yf(x)与曲线yg(x)的一个公共点是A(1,1),且在点A处的切线互相垂直(1)求a,b的值;(2)证明:当x1时,f(x)g(x).【解】(1)因为f(x)1,所以f(x),f(1)1.因为g(x)bx,所以g(x)b.因为曲线yf(x)与曲线yg(x)的一个公共点是A(1,1),且在点A处的切线互相垂直,所以g(1)1,且f(1)g(1)1,所以g(1)a1b1,g(1)a1b1,解得a1,b1.(2)证明:由(1)知,g(x)x,则f(x)g(

    2、x)1x0.令h(x)1x(x1),则h(1)0,h(x)11.因为x1,所以h(x)10,所以h(x)在1,)上单调递增,所以h(x)h(1)0,即1x0,所以当x1时,f(x)g(x).待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,利用导数研究其单调性,借助所构造函数的单调性即可得证 【变式】已知函数f(x)axxln x在xe2(e为自然对数的底数)处取得极小值(1)求实数a的值;(2)当x1时,求证:f(x)3(x1)解:(1)因为f(x)axxln x,所以f(x)aln x1,因为函数f(x)在xe2处取得极小值,所以f(e2)0,即aln e210,所以

    3、a1,所以f(x)ln x2.当f(x)0时,xe2;当f(x)0时,0x0)g(x)ln x1,由g(x)0,得xe.由g(x)0,得xe;由g(x)0,得0x0.于是在(1,)上,都有g(x)g(e)0,所以f(x)3(x1)方法二:隔离分析法例2、(2020福州模拟)已知函数f(x)eln xax(aR)(1)讨论f(x)的单调性;(2)当ae时,证明:xf(x)ex2ex0.【解】(1)f(x)a(x0),若a0,则f(x)0,f(x)在(0,)上单调递增;若a0,则当0x0,当x时,f(x)0,所以只需证f(x)2e,当ae时,由(1)知,f(x)在(0,1)上单调递增,在(1,)上

    4、单调递减,所以f(x)maxf(1)e.记g(x)2e(x0),则g(x),所以当0x1时,g(x)1时,g(x)0,g(x)单调递增,所以g(x)ming(1)e.综上,当x0时,f(x)g(x),即f(x)2e,即xf(x)ex2ex0.法二:由题意知,即证exln xex2ex2ex0,从而等价于ln xx2.设函数g(x)ln xx2,则g(x)1.所以当x(0,1)时,g(x)0,当x(1,)时,g(x)0,故g(x)在(0,1)上单调递增,在(1,)上单调递减,从而g(x)在(0,)上的最大值为g(1)1.设函数h(x),则h(x).所以当x(0,1)时,h(x)0,故h(x)在(

    5、0,1)上单调递减,在(1,)上单调递增,从而h(x)在(0,)上的最小值为h(1)1.综上,当x0时,g(x)h(x),即xf(x)ex2ex0. 若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个函数,从而找到可以传递的中间量,达到证明的目的 【变式】已知f(x)xln x.(1)求函数f(x)在t,t2(t0)上的最小值;(2)证明:对一切x(0,),都有ln x成立解:(1)由f(x)xln x,x0,得f(x)ln x1,令f(x)0,得x.当x时,f(x)0,f(x)单调递增当0tt2,即0t时,f(x)minf;当t(x(0,)由(1)可知f(x)xln x(x(0,)

    6、的最小值是,当且仅当x时取到设m(x)(x(0,),则m(x),由m(x)1时,m(x)为减函数,由m(x)0得0x成立方法三:特征分析法例3、已知函数f(x)axln x1.(1)若f(x)0恒成立,求a的最小值;(2)证明:xln x10;(3)已知k(exx2)xxln x恒成立,求k的取值范围【解】(1)由题意知x0,所以f(x)0等价于a.令g(x),则g(x),所以当x(0,1)时,g(x)0;当x(1,)时,g(x)1,恒有ln(x1)k1kx成立,求k的取值范围;(3)证明:1,ln(x1)k1kxkf(x1)k,所以f(x1)maxk,所以k1.(3)证明:由(1)可得f(x

    7、)f(x)maxf(1)11,当且仅当x1时取等号令xn2(nN*,n2)则1(n2),所以0),a为常数,若函数f(x)有两个零点x1,x2(x1x2)求证:x1x2e2.【证明】不妨设x1x20,因为ln x1ax10,ln x2ax20,所以ln x1ln x2a(x1x2),ln x1ln x2a(x1x2),所以a,欲证x1x2e2,即证ln x1ln x22.因为ln x1ln x2a(x1x2),所以即证a,所以原问题等价于证明,即ln,令c(c1),则不等式变为ln c.令h(c)ln c,c1,所以h(c)0,所以h(c)在(1,)上单调递增,所以h(c)h(1)ln 100

    8、,即ln c0(c1),因此原不等式x1x2e2得证换元法构造函数证明不等式的基本思路是直接消掉参数a,再结合所证问题,巧妙引入变量c,从而构造相应的函数其解题要点为:联立消参利用方程f(x1)f(x2)消掉解析式中的参数a抓商构元令c,消掉变量x1,x2,构造关于c的函数h(c)用导求解利用导数求解函数h(c)的最小值,从而可证得结论 【变式】已知函数f(x)ln xax2x,aR.(1)当a0时,求函数f(x)的图象在(1,f(1)处的切线方程;(2)若a2,正实数x1,x2满足f(x1)f(x2)x1x20,求证:x1x2.解:(1)当a0时,f(x)ln xx,则f(1)1,所以切点为

    9、(1,1),又因为f(x)1,所以切线的斜率kf(1)2,故切线方程为y12(x1),即2xy10.(2)证明:当a2时,f(x)ln xx2x(x0)由f(x1)f(x2)x1x20,得ln x1xx1ln x2xx2x1x20,从而(x1x2)2(x1x2)x1x2ln(x1x2),令tx1x2(t0),令(t)tln t,得(t)1,易知(t)在区间(0,1)上单调递减,在区间(1,)上单调递增,所以(t)(1)1,所以(x1x2)2(x1x2)1,因为x10,x20,所以x1x2.二、利用导数研究不等式的恒成立问题策略一:分离参数法例1、(2020湖北武汉质检)已知f(x)xln x,

    10、g(x)x3ax2x2.(1)求函数f(x)的单调区间;(2)若对任意x(0,),2f(x)g(x)2恒成立,求实数a的取值范围【解】(1)因为函数f(x)xln x的定义域为(0,),所以f(x)ln x1.令f(x)0,得ln x10,解得0x0,得ln x10,解得x,所以f(x)的单调递增区间是.综上,f(x)的单调递减区间是,单调递增区间是.(2)因为g(x)3x22ax1,由题意得2xln x3x22ax1恒成立因为x0,所以aln xx在x(0,)上恒成立设h(x)ln xx(x0),则h(x).令h(x)0,得x11,x2(舍)当x变化时,h(x),h(x)的变化情况如下表:x

    11、(0,1)1(1,)h(x)0h(x)极大值所以当x1时,h(x)取得极大值,也是最大值,且h(x)maxh(1)2,所以若ah(x)在x(0,)上恒成立,则ah(x)max2,即a2,故实数a的取值范围是2,)(1)分离参数法解含参不等式恒成立问题的思路用分离参数法解含参不等式恒成立问题是指在能够判断出参数的系数正负的情况下,可以根据不等式的性质将 参数分离出来,得到一个一端是参数,另一端是变量表达式的不等式,只要研究变量表达式的最值就可以解决问题(2)求解含参不等式恒成立问题的关键是过好“双关”转化关通过分离参数法,先转化为f(a)g(x)(或f(a)g(x)对xD恒成立,再转化为f(a)

    12、g(x)max(或f(a)g(x)min)求最值关求函数g(x)在区间D上的最大值(或最小值)问题【变式】(2020石家庄质量检测)已知函数f(x)axex(a1)(2x1)(1)若a1,求函数f(x)的图象在点(0,f(0)处的切线方程;(2)当x0时,函数f(x)0恒成立,求实数a的取值范围解:(1)若a1,则f(x)xex2(2x1)即f(x)xexex4,则f(0)3,f(0)2,所以所求切线方程为3xy20.(2)由f(1)0,得a0,则f(x)0对任意的x0恒成立可转化为对任意的x0恒成立设函数F(x)(x0),则F(x).当0x0;当x1时,F(x)0,a1)(1)求函数f(x)

    13、的极小值;(2)若存在x1,x21,1,使得|f(x1)f(x2)|e1(e是自然对数的底数),求实数a的取值范围解:(1)f(x)axln a2xln a2x(ax1)ln a.因为当a1时,ln a0,函数y(ax1)ln a在R上是增函数,当0a1时,ln a1或0a0的解集为(0,),f(x)0),因为g(a)10,所以g(a)a2ln a在(0,)上是增函数而g(1)0,故当a1时,g(a)0,即f(1)f(1);当0a1时,g(a)0,即f(1)1时,f(1)f(0)e1,即aln ae1.由函数yaln a在(1,)上是增函数,解得ae;当0a1时,f(1)f(0)e1,即ln ae1,由函数yln a在(0,1)上是减函数,解得0a.综上可知,所求实数a的取值范围为e,)

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题16利用导数证明不等式-2021年新高考数学基础考点一轮复习.docx
    链接地址:https://www.ketangku.com/wenku/file-832448.html
    相关资源 更多
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题及参考答案【B卷】.docx冀教版六年级上册数学第五单元 百分数的应用 练习题及参考答案【B卷】.docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(黄金题型).docx冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(黄金题型).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(轻巧夺冠).docx冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(轻巧夺冠).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(能力提升).docx冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(能力提升).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(考试直接用).docx冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(考试直接用).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(突破训练).docx冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(突破训练).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(满分必刷).docx冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(满分必刷).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(模拟题).docx冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(模拟题).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(完整版).docx冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(完整版).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(培优).docx冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(培优).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(名师推荐).docx冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(名师推荐).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(全国通用).docx冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(全国通用).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(B卷).docx冀教版六年级上册数学第五单元 百分数的应用 练习题加答案(B卷).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题【最新】.docx冀教版六年级上册数学第五单元 百分数的应用 练习题【最新】.docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题【实验班】.docx冀教版六年级上册数学第五单元 百分数的应用 练习题【实验班】.docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题【学生专用】.docx冀教版六年级上册数学第五单元 百分数的应用 练习题【学生专用】.docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题【中心小学】.docx冀教版六年级上册数学第五单元 百分数的应用 练习题【中心小学】.docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题【word】.docx冀教版六年级上册数学第五单元 百分数的应用 练习题【word】.docx
  • 冀教版六年级上册数学第五单元 百分数的应用 练习题word.docx冀教版六年级上册数学第五单元 百分数的应用 练习题word.docx
  • 冀教版六年级上册数学第五单元 百分数的应用 测试卷(考点精练).docx冀教版六年级上册数学第五单元 百分数的应用 测试卷(考点精练).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 测试卷(考点提分).docx冀教版六年级上册数学第五单元 百分数的应用 测试卷(考点提分).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 测试卷(综合卷).docx冀教版六年级上册数学第五单元 百分数的应用 测试卷(综合卷).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 测试卷(精练).docx冀教版六年级上册数学第五单元 百分数的应用 测试卷(精练).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 测试卷(研优卷).docx冀教版六年级上册数学第五单元 百分数的应用 测试卷(研优卷).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 测试卷(真题汇编).docx冀教版六年级上册数学第五单元 百分数的应用 测试卷(真题汇编).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 测试卷(基础题).docx冀教版六年级上册数学第五单元 百分数的应用 测试卷(基础题).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 测试卷附答案(能力提升).docx冀教版六年级上册数学第五单元 百分数的应用 测试卷附答案(能力提升).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 测试卷附答案(考试直接用).docx冀教版六年级上册数学第五单元 百分数的应用 测试卷附答案(考试直接用).docx
  • 冀教版六年级上册数学第五单元 百分数的应用 测试卷附答案(精练).docx冀教版六年级上册数学第五单元 百分数的应用 测试卷附答案(精练).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1