分享
分享赚钱 收藏 举报 版权申诉 / 11

类型专题19 四边形面积求最值问题-2022年中考数学之二次函数重点题型专题(全国通用版)(原卷版).docx

  • 上传人:a****
  • 文档编号:833007
  • 上传时间:2025-12-16
  • 格式:DOCX
  • 页数:11
  • 大小:885.37KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题19 四边形面积求最值问题-2022年中考数学之二次函数重点题型专题全国通用版原卷版 专题 19 四边形 面积 求最值 问题 2022 年中 数学 二次 函数 重点 题型 全国 通用版 原卷版
    资源描述:

    1、专题19 四边形面积求最值问题1(2021广西中考一模)如图,已知抛物线yx2+bx+c与x轴交于原点O和点A(6,0),抛物线的顶点为B(1)求该抛物线的解析式和顶点B的坐标;(2)若动点P从原点O出发,以每秒1个长度单位的速度沿线段OB运动,同时有一动点M从点A出发,以每秒2个长度单位的速度沿线段AO运动,当P、M其中一个点停止运动时另一个点也随之停止运动设它们的运动时间为t(s),连接MP,当t为何值时,四边形ABPM的面积最小?并求此最小值(3)在(2)的条件下,当t为何值时,OPM是直角三角形?2(2021重庆巴蜀中学中考二模)在平面直角坐标系中,抛物线与轴交于点与轴交于,两点(点在

    2、点的左侧),其中,并且抛物线过点(1)求抛物线的解析式;(2)如图1,点为直线上方抛物线上一点,过作轴交于点连接,求四边形面积的最大值及点的坐标;(3)如图2,将抛物线沿射线方向平移得新抛物线,是否在新抛物线上存在点,在平面内存在点,使得以,为顶点的四边形为正方形?若存在,直接写出此时新抛物线的顶点坐标,若不存在,请说明理由3(2021重庆市育才中学九年级期末)如图,在平面直角坐标系中,抛物线与y轴交于点C,与x轴交于A、B两点(点A在点B左侧),且A点的坐标为,直线的解析式为(1)求抛物线的解析式;(2)如图,过A作,交抛物线于点D,点P为直线下方抛物线上一动点,连接,求四边形面积的最大值:

    3、(3)将抛物线向左平移个单位长度,平移后的抛物线的顶点为E,连接,将线段沿y轴平移得到线段(为B的对应点,为E的对应点),直线与x轴交于点F,点Q为原抛物线对称轴上一点,连接,能否成为以为直角边的等腰直角三角形?若能,请直接写出所有符合条件的点Q的坐标;若不能,请说明理由4(2021浙江绍兴市九年级期中)如图,已知抛物线的图象经过点,与y轴交于点C,抛物线的顶点为D,对称轴与x轴相交于点E,连接BD(1)求抛物线的解析式(2)在抛物线上点B和点D之间是否存在一点H使得四边形OBHC的面积最大,若存在求出四边形OBHC的最大面积,若不存在,请说明理由(3)直线BD上有一点P,使得时,过P作轴于F

    4、,点M为x轴上一动点,N为直线PF上一动点,G为抛物线上一动点,当以点F,N,G,M四点为顶点的四边形为正方形时,求点M的坐标5(2021广东深圳中考一模)在平面直角坐标系中,点为坐标原点,直线与轴交于点,过点的抛物线与直线交于另一点,且点的横坐标为1(1)该抛物线的解析式为 ;(2)如图1,为抛物线上位于直线上方的一动点(不与、重合),过作轴,交 轴于,连接,为中点,连接,过 作交直线于,若点的横坐标为 ,点的横坐标为,求与的函数关系式;在此条件下,如图2,连接并延长,交 轴于,连接,求为何值时,(3)如图3,将直线绕点顺时针旋转15度交抛物线对称轴于点,点为线段上的一动点(不与 、重合),

    5、以点为圆心、以为半径的圆弧与线段交于点,以点 为圆心、以为半径的圆弧与线段交于点,连接在点 运动的过程中,四边形的面积有最大值还是有最小值?请求出该值6(20212022江苏常熟市九年级开学考试)如图,已知抛物线的图像经过点,其对称轴为直线:,过点作轴交抛物线于点,的平分线交线段于点,点是抛物线上的一个动点,设其横坐标为(1)求抛物线的解析式; (2)如图1,动点在直线下方的抛物线上,连结,当为何值时,四边形面积最大,并求出其最大值(3)如图,是抛物线的对称轴上的一点,连接,在抛物线轴下方的图像上是否存在点使满足:;?若存在,求点的坐标,若不存在,请说明理由7(2021重庆巴川中学校九年级月考

    6、)抛物线与x轴交于A、B两点,与y轴交于C点,抛物线的对称轴交x轴于点D,已知,(1)求抛物线的表达式;(2)如图1,点P是线段上的一个动点,过点P作x轴的垂线与抛物线相交于点Q,当点P运动到什么位置时,四边形的面积最大?求出四边形的最大面积及此时点的坐标(3)如图2,设抛物线的顶点为M,将抛物线沿射线方向以每秒个单位的速度平移t秒,平移后的抛物线的顶点为,当是等腰三角形时,求t的值8(2021吉林铁西九年级期末)如图,抛物线(,是常数,且)与轴交于,两点,与轴交于点并且,两点的坐标分别是,抛物线顶点为(1)求出抛物线的解析式;顶点的坐标为_;直线的解析式为_;(2)若为线段上的一个动点,其横

    7、坐标为,过点作轴于点,求当为何值时,四边形的面积最大?(3)若点在抛物线的对称轴上,若线段绕点逆时针旋转后,点的对应点恰好也落在此抛物线上,请直接写出点的坐标9(2020湖北襄阳中考真题)如图,直线交y轴于点A,交x轴于点C,抛物线经过点A,点C,且交x轴于另一点B(1)直接写出点A,点B,点C的坐标及抛物线的解析式;(2)在直线上方的抛物线上有一点M,求四边形面积的最大值及此时点M的坐标;(3)将线段绕x轴上的动点顺时针旋转90得到线段,若线段与抛物线只有一个公共点,请结合函数图象,求m的取值范围10(2021青海西宁中考真题)如图,在平面直角坐标系中,一次函数的图象与x轴交于点A,与y轴交

    8、于点B,点C的坐标为,抛物线经过A,B,C三点(1)求抛物线的解析式;(2)直线AD与y轴负半轴交于点D,且,求证:;(3)在(2)的条件下,若直线与抛物线的对称轴l交于点E,连接,在第一象限内的抛物线上是否存在一点P,使四边形的面积最大?若存在,请求出点P的坐标及四边形面积的最大值;若不存在,请说明理由11(2021重庆酉阳九年级期末)如图,在平面直角坐标系中,抛物线yx2+4x+5与y轴交于点A,与x轴的正半轴交于点C(1)求直线AC解析式;(2)过点A作AD平行于x轴,交抛物线于点D,点F为抛物线上的一点(点F在AD上方),作EF平行于y轴交AC于点E,当四边形AFDE的面积最大时?求点

    9、F的坐标,并求出最大面积;(3)若动点P先从(2)中的点F出发沿适当的路径运动到抛物线对称轴上点M处,再沿垂直于y轴的方向运动到y轴上的点N处,然后沿适当的路径运动到点C停止,当动点P的运动路径最短时,求点N的坐标,并求最短路径长.12(2019重庆万州外国语中考三模)在平面直角坐标系中,O为坐标原点,过二次函数yx2+4x图象上的点A(3,3)作x轴的垂线交x轴于点B(1)如图1,P为线段OA上方抛物线上的一点,在x轴上取点C(1,0),点M、N为y轴上的两个动点,点M在点N的上方且MN1连接AC,当四边形PACO的面积最大时,求PM+MNNO的最小值(2)如图2,点Q(3,1)在线段AB上

    10、,作射线CQ,将AQC沿直线AB翻折,C点的对应点为C,将AQC沿射线CQ平移3个单位得AQC,在射线CQ上取一点M,使得以A、M、C为顶点的三角形是等腰三角形,求M点的坐标13(重庆江北九年级月考)已知:如图,二次函数的图象交轴于点和点(点在点左则),交轴于点,作直线是直线上方抛物线上的一个动点过点作 直线平行于直线是直线 上的任意点,是直线上的任意点,连接,始终保持为,以和边,作矩形 (1)在点移动过程中,求出当的面积最大时点的坐标;在的面积最大 时,求矩形的面积的最小值 (2)在的面积最大时,线段交直线于点,当点四个点组成平行 四边形时,求此时线段与抛物线的交点坐标14(2021辽宁抚顺

    11、中考模拟预测)如图,抛物线y+bx+c经过ABC的三个顶点,其中点A(0,1),点B(9,10),ACx轴,点P是直线AC上方抛物线上的动点(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB,AC分别交于点E,F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C,P,Q为顶点的三角形与ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由15(2021山东新泰中考一模)如图,抛物线交轴于点和点,交轴于点已知点的坐标为,点为第二象限内抛物线上的一个动点,连接(1)求这个抛物线的表达式(2)点为第二象限内抛物线上的一个动

    12、点,求四边形面积的最大值(3)点在平面内,当是以为斜边的等腰直角三角形时,求出满足条件的所有点的坐标;在的条件下,点在抛物线对称轴上,当时,求出满足条件的所有点的坐标16(2021山西阳泉中考一模)如图1,抛物线经过点、两点,与y轴交于点C点P为线段上一动点(不与点B重合),连接,将沿直线翻折得到,交抛物线的另一点为Q,连接(1)求抛物线的表达式;(2)求四边形面积的最大值;(3)当时,点N为抛物线上一点,直线交y轴于点M求点Q的坐标若的面积为面积的8倍,请直接写出点N的坐标17(2021重庆实验外国语学校九年级月考)如图,在平面直角坐标系中,抛物线交x轴于A、B,交y轴于点C(1)求的面积;(2)D为抛物线的顶点,连接,点P为抛物线上点C、D之间一点,连接,过点P作交直线于点M,连接,求四边形面积的最大值以及此时P点的坐标:(3)将抛物线沿射线方向平移个单位后得到新的抛物线),新抛物线与原抛物线的交点为E,在原抛物线上是否存在点Q,使得以B,E,Q为顶点的三角形为直角三角形?若存在,请直接写出点Q的坐标:若不存在,请说明理由

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题19 四边形面积求最值问题-2022年中考数学之二次函数重点题型专题(全国通用版)(原卷版).docx
    链接地址:https://www.ketangku.com/wenku/file-833007.html
    相关资源 更多
  • 人教版一年级上册数学 期中测试卷含解析答案.docx人教版一年级上册数学 期中测试卷含解析答案.docx
  • 人教版一年级上册数学 期中测试卷含精品答案.docx人教版一年级上册数学 期中测试卷含精品答案.docx
  • 人教版一年级上册数学 期中测试卷含答案解析.docx人教版一年级上册数学 期中测试卷含答案解析.docx
  • 人教版一年级上册数学 期中测试卷含答案下载.docx人教版一年级上册数学 期中测试卷含答案下载.docx
  • 人教版一年级上册数学 期中测试卷含答案.docx人教版一年级上册数学 期中测试卷含答案.docx
  • 人教版一年级上册数学 期中测试卷含下载答案.docx人教版一年级上册数学 期中测试卷含下载答案.docx
  • 人教版一年级上册数学 期中测试卷可打印.docx人教版一年级上册数学 期中测试卷可打印.docx
  • 人教版一年级上册数学 期中测试卷及解析答案.docx人教版一年级上册数学 期中测试卷及解析答案.docx
  • 人教版一年级上册数学 期中测试卷及精品答案.docx人教版一年级上册数学 期中测试卷及精品答案.docx
  • 人教版一年级上册数学 期中测试卷及答案(考点梳理).docx人教版一年级上册数学 期中测试卷及答案(考点梳理).docx
  • 人教版一年级上册数学 期中测试卷及答案(网校专用).docx人教版一年级上册数学 期中测试卷及答案(网校专用).docx
  • 人教版一年级上册数学 期中测试卷及答案(精选题).docx人教版一年级上册数学 期中测试卷及答案(精选题).docx
  • 人教版一年级上册数学 期中测试卷及答案(精品).docx人教版一年级上册数学 期中测试卷及答案(精品).docx
  • 人教版一年级上册数学 期中测试卷及答案(有一套).docx人教版一年级上册数学 期中测试卷及答案(有一套).docx
  • 人教版一年级上册数学 期中测试卷及答案(最新).docx人教版一年级上册数学 期中测试卷及答案(最新).docx
  • 人教版一年级上册数学 期中测试卷及答案(易错题).docx人教版一年级上册数学 期中测试卷及答案(易错题).docx
  • 人教版一年级上册数学 期中测试卷及答案(新).docx人教版一年级上册数学 期中测试卷及答案(新).docx
  • 人教版一年级上册数学 期中测试卷及答案(必刷).docx人教版一年级上册数学 期中测试卷及答案(必刷).docx
  • 人教版一年级上册数学 期中测试卷及答案(夺冠).docx人教版一年级上册数学 期中测试卷及答案(夺冠).docx
  • 人教版一年级上册数学 期中测试卷及答案(夺冠系列).docx人教版一年级上册数学 期中测试卷及答案(夺冠系列).docx
  • 人教版一年级上册数学 期中测试卷及答案(历年真题).docx人教版一年级上册数学 期中测试卷及答案(历年真题).docx
  • 人教版一年级上册数学 期中测试卷及答案(典优).docx人教版一年级上册数学 期中测试卷及答案(典优).docx
  • 人教版一年级上册数学 期中测试卷及答案(全国通用).docx人教版一年级上册数学 期中测试卷及答案(全国通用).docx
  • 人教版一年级上册数学 期中测试卷及答案(全优).docx人教版一年级上册数学 期中测试卷及答案(全优).docx
  • 人教版一年级上册数学 期中测试卷及答案解析.docx人教版一年级上册数学 期中测试卷及答案解析.docx
  • 人教版一年级上册数学 期中测试卷及答案参考.docx人教版一年级上册数学 期中测试卷及答案参考.docx
  • 人教版一年级上册数学 期中测试卷及答案免费下载.docx人教版一年级上册数学 期中测试卷及答案免费下载.docx
  • 人教版一年级上册数学 期中测试卷及答案免费.docx人教版一年级上册数学 期中测试卷及答案免费.docx
  • 人教版一年级上册数学 期中测试卷及答案下载.docx人教版一年级上册数学 期中测试卷及答案下载.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1