专题19 圆与方程解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题19 圆与方程解析 专题 19 方程 解析
- 资源描述:
-
1、专题19 圆与方程第一部分 真题分类1(2021北京高考真题)已知圆,直线,当变化时,截得圆弦长的最小值为2,则( )ABCD【答案】C【解析】由题可得圆心为,半径为2,则圆心到直线的距离,则弦长为,则当时,弦长取得最小值为,解得.故选:C.2(2020北京高考真题)已知半径为1的圆经过点,则其圆心到原点的距离的最小值为( )A4B5C6D7【答案】A【解析】设圆心,则,化简得,所以圆心的轨迹是以为圆心,1为半径的圆,所以,所以,当且仅当在线段上时取得等号,故选:A.3(2020全国高考真题(理)若直线l与曲线y=和x2+y2=都相切,则l的方程为( )Ay=2x+1By=2x+Cy=x+1D
2、y=x+【答案】D【解析】设直线在曲线上的切点为,则,函数的导数为,则直线的斜率,设直线的方程为,即,由于直线与圆相切,则,两边平方并整理得,解得,(舍),则直线的方程为,即.故选:D.4.(2020全国高考真题(文)已知圆,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )A1B2C3D4【答案】B【解析】圆化为,所以圆心坐标为,半径为,设,当过点的直线和直线垂直时,圆心到过点的直线的距离最大,所求的弦长最短,此时根据弦长公式得最小值为.故选:B.5(2020全国高考真题(理)已知M:,直线:,为上的动点,过点作M的切线,切点为,当最小时,直线的方程为( )ABCD【答案】D【解析】
3、圆的方程可化为,点 到直线的距离为,所以直线 与圆相离依圆的知识可知,四点四点共圆,且,所以,而 ,当直线时, ,此时最小即 ,由解得, 所以以为直径的圆的方程为,即 ,两圆的方程相减可得:,即为直线的方程故选:D.6(2020全国高考真题(理)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线的距离为( )ABCD【答案】B【解析】由于圆上的点在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为,则圆的半径为,圆的标准方程为.由题意可得,可得,解得或,所以圆心的坐标为或,圆心到直线的距离均为;圆心到直线的距离均为圆心到直线的距离均为;所
4、以,圆心到直线的距离为.故选:B.7(2021全国高考真题)已知直线与圆,点,则下列说法正确的是( )A若点A在圆C上,则直线l与圆C相切B若点A在圆C内,则直线l与圆C相离C若点A在圆C外,则直线l与圆C相离D若点A在直线l上,则直线l与圆C相切【答案】ABD【解析】圆心到直线l的距离,若点在圆C上,则,所以,则直线l与圆C相切,故A正确;若点在圆C内,则,所以,则直线l与圆C相离,故B正确;若点在圆C外,则,所以,则直线l与圆C相交,故C错误;若点在直线l上,则即,所以,直线l与圆C相切,故D正确.故选:ABD.8(2021全国高考真题)已知点在圆上,点、,则( )A点到直线的距离小于B点
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2018-2022年安徽省近五年中考物理试卷(PDF版附答案).pdf
