专题20 最值问题中的构造圆与隐形圆模型(原卷版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题20 最值问题中的构造圆与隐形圆模型原卷版 专题 20 问题 中的 构造 隐形 模型 原卷版
- 资源描述:
-
1、专题20 最值问题中的构造圆与隐形圆模型 【模型展示】特点隐形圆解决点圆最值平面内一定的D和O上动点M的连线中,当连线过圆心O时,线段DM有最大值和最小值。分以下情况讨论:(设OD=d,O的半径为r)1、点D在O外时,dr,如图:当D、M、O三点共线时,线段DM出现最值,DM的最大值为d+r,DM的最小值为d-r;2、当点D在O上时,d=r,如图:当D、O、M三点共线时,线段DM有最值;DM最大值为d+r,DM最小值为d-r=0(即点D与点M重合)3、当点D在O内时,dr,如图当点D、O、M三点共线时,DM有最值;DM最大值为d+r,DM最小值为|d-r|=r-d;点圆最值:平面内一定点到圆上
2、一点的距离的最值问题;构造圆解决点圆最值一、定点定长1、O为定点,OA=OB,且长度固定,那么O、A、B三点可以确定一个圆,动点P在圆弧AB上运动,如图所示,Q为圆外一定点,当P运动到OQ的连线上时,即:P落到P1处,O、P1、Q三点共线时,PQ最小。二、定弦定角2、线段AB固定,Q为动点,且AQB为定值,那么Q、A、B三点可以确定一个圆,动点Q在圆弧AB上运动,如图所示,R为圆外一定点,当Q运动到OQ的连线上时,即:P落到P1处,O、P1、Q三点共线时,RQ最小。结论点的距离的最值问题【题型演练】一、单选题1如图,在ABC中,ACB90,ACBC,AB4cm,CD是中线,点E、F同时从点D出
3、发,以相同的速度分别沿DC、DB方向移动,当点E到达点C时,运动停止,直线AE分别与CF、BC相交于G、H,则在点E、F移动过程中,点G移动路线的长度为()A2BC2D2如图,ACB中,CACB4,ACB90,点P为CA上的动点,连BP,过点A作AMBP于M当点P从点C运动到点A时,线段BM的中点N运动的路径长为()ABCD23如图,在中,cm,cm是边上的一个动点,连接,过点作于,连接,在点变化的过程中,线段的最小值是()A1BC2D4如图,中,P是内部的一个动点,满足,则线段CP长的最小值为()AB2CD5如图,的半径是,P是上一动点,A是内部一点,且,则下列说法正确的是()PA的最小值为
4、;PA的最大值为;当时,PAO是等腰直角三角形;PAO面积最大为ABCD6如图,菱形ABCD边长为4,A60,M是AD边的中点,N是AB边上一动点,将AMN沿MN所在的直线翻折得到AMN,连接AC,则AC的最小值是()A2B+1C22D37如图,在平面直角坐标系中,直线分别与x轴、y轴相交于点A、B,点E、F分别是正方形OACD的边OD、AC上的动点,且,过原点O作,垂足为H,连接HA、HB,则面积的最大值为()AB12CD二、填空题8如图,长方形ABCD中,BC=2,点E是DC边上的动点,现将BEC沿直线BE折叠,使点C落在点F处,则点D到点F的最短距离为_9如图,RtABC中,ACB90,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
