专题27 向量法求空间角(原卷版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题27 向量法求空间角原卷版 专题 27 向量 空间 原卷版
- 资源描述:
-
1、专题27 向量法求空间角一、单选题 1在正方体中,分别为,的中点,则异面直线与所成角的大小是( )ABCD2在长方体中,设交于点,则异面直线与所成角的余弦值为( )ABCD3如图在棱长为2的正方体中,点是的中点,那么异面直线和所成的角的余弦值等于( )ABCD4如图,已知点、G、分别是正方体中棱、的中点,记二面角的平面角为,直线与平面所成角为,直线与直线所成角为,则( )ABCD5如图,在正四面体中,记平面与平面平面平面,所成的锐二面角分别为,则( )ABCD6如图,在长方体中,是的中点,则直线与所成角的余弦值为( )ABCD7已知两条异面直线的方向向量分别是,1,2,则这两条异面直线所成的角
2、满足( )ABCD二、解答题8如图,四边形中,是等腰直角三角形,是边长为2的正三角形,以为折痕,将向上折叠到的位置,使点在平面内的射影在上,再将向下折叠到的位置,使平面平面,形成几何体.(1)点在上,若平面,求点的位置;(2)求二面角的余弦值.9如图所示,在四棱锥中,底面,为的中点.(1)求证:平面;(2)在侧面内找一点,使平面;(3)求直线与平面所成角的正弦.10如图所示,四棱锥中,侧面是边长为的正三角形且与底面垂直,底面是的菱形,为的中点.(1)求与底面所成角的大小;(2)求证:平面;(3)求二面角的余弦值.11如图,三棱柱中,平面平面,和都是正三角形,是的中点(1)求证:平面;(2)求二
3、面角的余弦值12如图,在四棱锥中,底面中,侧面平面,且,点在棱上,且()证明:平面;()求二面角的余弦值13如图,在底面为菱形的四棱锥中,(1)证明:;(2)若,点在线段上,且,求二面角的余弦值14如图,在四棱锥中,底面,底面是边长为2的正方形,分别是,的中点(1)求证:平面;(2)求平面与平面夹角的余弦值;(3)在上是否存在一点,使得与所成角为?若存在,求出点坐标,若不存在,请说明理由15已知如图,在菱形中,且,为的中点,将沿折起使,得到如图所示的四棱锥.(1)求证:平面平面;(2)若为的中点,求二面角的余弦值.16如图,E为矩形边的中点,沿将向上翻折至,使得二面角为60,且,.(1)证明:
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
