专题32 函数的存在与恒成立问题(教师版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题32 函数的存在与恒成立问题教师版 专题 32 函数 存在 成立 问题 教师版
- 资源描述:
-
1、专题32 函数的存在与恒成立问题一、题型选讲题型一 、 函数的存在问题函数的恒成立问题往往采取分离参数法,参变分离法的适用范围:判断恒成立问题是否可以采用参变分离法,可遵循以下两点原则:,则只需要 ,则只需要,则只需要 ,则只需要例1、【2019年高考浙江】已知,函数,若存在,使得,则实数的最大值是_.【答案】【解析】存在,使得,即有,化为,可得,即,由,可得.则实数的最大值是.例2、(2016泰州期末) 若命题“存在xR,ax24xa0”为假命题,则实数a的取值范围是_【答案】 (2,)【解析】“存在xR,ax24xa0”为假命题,则其否定“对任意xR,ax24xa0”为真命题,当a0,4x
2、0不恒成立,故不成立;当a0时,解得a2,所以实数a的取值范围是(2,)易错警示 转为真命题来处理,二次项系数为参数的不等式恒成立问题,要注意讨论二次项系数为0时能否成立例3、(2016苏锡常镇调研) 已知函数f(x)x,若存在x,使得f(x)2,则实数a的取值范围是_【答案】. (1,5)【解析】解法1 当x1,2时,f(x)2,等价于|x3ax|2,即2x3ax2,即x32axx32,得到x2ax2,即minamax,得到1a5.解法2 原问题可转化为先求:对任意x1,2,使得f(x)2时,实数a的取值范围则有x|x2a|2,即|ax2|.(1) 当a4时,ax2225,得到a5.(2)
3、当a1时,x2a,有ax211,得到a1.(3) 当1a0矛盾那么有a1或a5,故原题答案为1a5.题型二、 函数的恒成立问题函数的恒成立问题往往采取分离参数法,参变分离法的适用范围:判断恒成立问题是否可以采用参变分离法,可遵循以下两点原则:(1)已知不等式中两个字母是否便于进行分离,如果仅通过几步简单变换即可达到分离目的,则参变分离法可行。但有些不等式中由于两个字母的关系过于“紧密”,会出现无法分离的情形,此时要考虑其他方法。(2)要看参变分离后,已知变量的函数解析式是否便于求出最值(或临界值),若解析式过于复杂而无法求出最值(或临界值),则也无法用参变分离法解决问题。(可参见”恒成立问题最
4、值分析法“中的相关题目)参变分离后会出现的情况及处理方法:(假设为自变量,其范围设为,为函数;为参数,为其表达式)(1)若的值域为 ,则只需要 ,则只需要,则只需要 ,则只需要例4、(2020届山东省泰安市高三上期末)设函数在定义域(0,+)上是单调函数,若不等式对恒成立,则实数a的取值范围是_【答案】【解析】由题意可设,则,由得,对恒成立,令,则,由得,在上单调递减,在单调递增,故答案为:变式5、【2019年高考天津理数】已知,设函数若关于的不等式在上恒成立,则的取值范围为ABCD【答案】C【解析】当时,恒成立;当时,恒成立,令,则,当,即时取等号,则.当时,即恒成立,令,则,当时,函数单调
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
