专题33 与导数相关的极值、最值-2023年高考数学优拔尖核心压轴题(选择、填空题)(新高考地区专用).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题33 与导数相关的极值、最值-2023年高考数学优拔尖核心压轴题选择、填空题新高考地区专用 专题 33 导数 相关 极值 2023 年高 数学 拔尖 核心 压轴 选择 填空 新高 地区 专用
- 资源描述:
-
1、专题33 与导数相关的极值、最值【方法点拨】1.极值问题转化为(二次)方程根的问题,为求某个表达式的范围,其难点在于消元、新元的范围.2.利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由分离变量得出,将问题等价转化为直线与函数的图象的交点问题.【典型题示例】例1 (2022全国乙卷17)已知和分别是函数(且)的极小值点和极
2、大值点若,则a的取值范围是_【答案】【分析】由分别是函数的极小值点和极大值点,可得时,时,再分和两种情况讨论,方程的两个根为,即函数与函数的图象有两个不同的交点,且满足时,时,求出函数与函数相切时a的值,结合图象即可得出答案.【解析】,因为分别是函数的极小值点和极大值点,所以函数在和上递减,在上递增,所以当时,当时,若时,当时,则此时,与前面矛盾,故不符合题意(如下图左立知)若时,设函数与函数的图象的切点为,则,得即,代入得,解得(不合题意,舍去),或此时,当增大时,函数与函数的图象有两个不同的交点(如上图右),又,所以,综上所述,的范围为.例2 已知在上恰有两个极值点,且,则的取值范围为(
3、)A. B. C. D.【答案】D【分析】由题意得导函数在区间有两个零点,根据二次函数性质可得,由根与系数的关系可得以及,求出的表达式,将用表示,表示为关于的函数,利用导数与单调性的关系即可求出结果.【解析】由题意得,令,得,由题意知在上有两个根,得由根与系数的关系得,由求根公式得,则,令,则设,则,易知在上单调递增,当时,函数为减函数,且,故选:D.点评:1.根据极值点的概念,结合根据系数的关系和二次函数的性质得到参数的取值范围,以及与之间的关系;2.将题意转化为关于的函数,构造出,利用导数判断单调性.例3 已知,是函数,的两个极值点,若, 则的取值范围为 【答案】【分析】先由题得所以,化简
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-834836.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
人教版小学数学三年下册《三位数除以一位数(商是三位数)》说课稿(附反思、板书)课件.pptx
