专题六 函数导数-2022年高考数学二轮复核心速学解答题专题突破(艺体生适用).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题六 函数导数-2022年高考数学二轮复核心速学解答题专题突破艺体生适用 专题 函数 导数 2022 年高 数学 二轮 复核 心速学 解答 突破 艺体生 适用
- 资源描述:
-
1、核心速学专题六 函数导数【核心考点整合】【思维导引】1.曲线的切线问题的类型与处理策略曲线的切线问题主要考查切线方程的求解、切线存在性等问题,主要题型有以下几种:(1)求曲线在“某一点处”和“过某一点”的切线方程,前者直接求导,代入求斜率,再求切线方程,后者需要设出切点,建立方程,求出切点,再求切线方程.(2)某条直线与两个函数均相切的证明或求参数的范围,通常需要设出两个切点的坐标,得到两条直线方程,再证明其重合,或建立参数的关系式,进而运用消元法,再结合导数的知识求得参数的范围.(3)根据切线与函数图象的关系,运用放缩法,化繁为简,构建新函数,探究函数的单调性,进而证明不等式2.函数与不等式
2、恒成立问题的处理与转化(1)含单元变量的恒成立问题,通常有三种方法:第一种方法(也是首选方法)是;参变分离(即将函数中的参数和变量分而治之,分开到不等式的两侧,一侧是参数,一侧是变量),判断谁是参教谁是变量的方法是题目最后求解的往往是参数,而题干中给出范围的那个就是变量,第二种方法是:最值的思想,有些函数恒成立问题是无法分参的,可以通过求解函数的最值,让最小值大于等于零,或者最大值小于等于零,第三种方法是借助一些不等式放缩实现。(2) 含双元变量的恒成立问题,按照变量的转化先后顺序通常有两种思路,要注意对函数的结构特点进行观察,选择合适、简洁的方法.3.导数与不等式存在性问题的处理与转化(1)
3、含单变量的存在性问题,通常有两种处理思路:函数最值法,将不等式转化为某待求参数的最值问题,利用导数求得该函数的极值、最值,然后构建不等式求解;分离参数法,将不等式转化为不含参数的函数的最值问题,利用导数求得该函数的最值,根据要求求得范围。(2)含双元变量的存在性问题,构造函数,转化两个函数最值的大小关系来处理4.极值点偏移问题极值点偏移问题的基本类型(1)不含参数的极值点偏移问题:其本质是双变元问题,为此,直接构造一元差函数,转化为一元函数问题来加以解决.(2)含有参数的极值点偏移问题:其本质是三变元问题,为此,要想方设法消去参数,从而转化成不含参数的问题去解决;或者以参数为媒介,构造出一个变
4、元的新的函数.对于简单的含有参数的极值点偏移问题,可以通过分离参数的方法将它转化为不含参数的极值点偏移问题来加以处理.求解极值点偏移问题的基本解法极值点偏移问题,一般利用通过原函数的单调性,把与自变量有关的不等式问题转化与原函数的函数值有关的不等式问题,也可以引入第三个变量,把不等式的问题转化为与新引入变量有关的不等式问题. 【真题领航】1.(2020全国新高考卷)已知函数(1)当时,求曲线y=f(x)在点(1,f(1)处的切线与两坐标轴围成的三角形的面积;(2)若f(x)1,求a的取值范围【解析】(1),.,切点坐标为(1,1+e),函数f(x)在点(1,f(1)处的切线方程为,即,切线与坐
5、标轴交点坐标分别为,所求三角形面积为.(2)解法一:,,且.设,则g(x)在上单调递增,即在上单调递增,当时,,成立.当时,,存在唯一,使得,且当时,当时,因此1,恒成立;当时, 不是恒成立.综上所述,实数a的取值范围是1,+).解法二:等价于,令,上述不等式等价于,显然为单调增函数,又等价于,即,令,则在上h(x)0,h(x)单调递增;在(1,+)上h(x)0.(1)设g(x)是f(x)的导函数,讨论g(x)的单调性.(2)证明:存在a(0,1),使得f(x)0恒成立,且f(x)0在区间(1,)内有唯一解【解析】(1)由已知,函数f(x)的定义域为(0,),g(x)f(x)2(x1lnxa)
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-836583.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
北京市2016-2017学年高二语文上册 4.11.1 廉颇蔺相如列传(同步课件)(必修4) .ppt
