分享
分享赚钱 收藏 举报 版权申诉 / 17

类型人教版 九年级上册 新初三暑假衔接课程 圆 第一、二课时 含习题和答案.docx

  • 上传人:a****
  • 文档编号:858167
  • 上传时间:2025-12-16
  • 格式:DOCX
  • 页数:17
  • 大小:1.60MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    人教版 九年级上册 新初三暑假衔接课程 第一、二课时 含习题和答案 九年级 上册 初三 暑假 衔接 课程 第一 课时 习题 答案
    资源描述:

    1、新初三暑假数学衔接导学案1.1 圆的有关概念问题1 观察下列图形,你能从中找出它们的共同特征吗?问题2 观察下列画圆的过程,你能由此说出圆的形成过程吗?探究新知圆的定义:在一个平面内,一条线段OA绕它的一个端点O旋转一周,另一个端点A所形成的图形叫作圆。圆心:固定的端点叫作圆心。半径:线段OA的长度叫作这个圆的半径。圆的表示方法:以点O为圆心的圆,记作“O”,读作“圆O”。同时从圆的定义中归纳:(1)圆上各点到定点(圆心)的距离都等于定长(半径);(2)到定点的距离等于定长的点都在同一个圆上。圆的第二定义:所有到定点的距离等于定长的点组成的图形叫作圆。问题3 观察下列图形,你能说出弦、直径、弧

    2、、半圆的定义吗?弦:连接圆上任意两点的线段叫作弦;直径:经过圆心的弦叫作直径;弧:圆上任意两点间的部分叫作圆弧,简称弧;弧的表示方法:以A、B为端点的弧记作,读作“圆弧AB”或“弧 AB”;半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫作半圆。 优弧:大于半圆的弧叫作优弧,用三个字母表示,如上图中的弧ABC;劣弧:小于半圆的弧叫作劣弧,如上图中的弧AB。应用新知例1:讨论,车轮为什么做成圆形?如果做成正方形会有什么结果?分析:如图,把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此当车辆在平坦的路上行驶时,

    3、坐车的人会感觉到非常平稳;如果做成其他图形,比如正方形,正方形的中心(对角线的交点)距离地面的距离随着正方形的滚动而改变,因此中心到地面的距离就不是保持不变,因此不稳定。例2:矩形的四个顶点能否在同一个圆上?如果不在,说明理由;如果存在,指出这个圆的圆心和半径。解:如图,连接AC、BD交与点O,在矩形ABCD中,OA=OC=AC,OB=OD=BD,AC=BD,OA=OB=OC=OD,A、B、C、D者这四个点在以点O为圆心,OA为半径的同一个圆上。巩固新知练习1 在以下所给的命题中,是真命题的有( )。 直径是弦;弦是直径;半圆是弧,但弧不一定是半圆;半径相等的两个半圆是等弧;长度相等的弧是等弧

    4、。练习2 确定一个圆的要素有两个,即_和_;_决定圆的位置,_决定圆的大小。练习3 以O为圆心可以画多少个圆?以2cm为半径可以画多少个圆?以O为圆心,2cm为半径可以画多少个圆?练习4 如何在操场上画一个半径是5 m的圆?说出你的理由。分析:根据圆的定义可以知道,圆是一条线段绕一个端点旋转一周,另一个端点形成的图形,所以可以用一条长5m的绳子,将绳子的一端A固定,然后拉紧绳子的另一端B,并绕A在地上转一圈。B所经过的路径就是所要的圆。练习5 从树木的年轮,可以很清楚地看出树生长的年龄。如果一棵20年树龄的红杉树的树干直径是23 cm,这棵红杉树平均每年半径增加多少?答案:树干的半径是2321

    5、1.5(cm)。平均每年半径增加11.5200.575(cm)。1.2 垂径定理问题引入问题1 请拿出准备好的圆形纸片,将其沿圆心所在的任一条直线对折,你会发现什么?多折几次试一试。追问1:由折纸可知圆是轴对称图形吗?追问2:如果是一个残缺的圆形纸片,你能找到它的圆心吗?问题2 你知道赵州桥吗?它是1300多年前我国隋代建造的石拱桥,是我国古代人民勤劳与智慧的结晶。它的主桥是圆弧形,它的跨度(弧所对的弦长)为37。4m,拱高(弧的中点到弦的距离)为7.2m,你能求出赵州桥主桥拱的半径吗?(精确到0.1m)问题3 通过前面的折纸我们知道圆是轴对称图形,那么它有几条对称轴?分别是什么?结论:(1)

    6、圆是轴对称图形;(2)经过圆心的每条直线(不是直径)都是它的对称轴;(3)圆的对称轴有无数条。问题4 如图 :AA是O的一条弦,作直径CD,使CDAA,垂足M。(1) O是轴对称图形,CD是它的对称轴吗?(2)AOA也是轴对称图形吗?CD也是它的对称轴吗?(3)你能找出图中有哪些相等的线段和相等的弧?请说明理由。(4)你能文字语言叙述你发现的这些结论吗?垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。(5)你能用几何方法证明这些结论吗?已知:在O中,CD是直径,AA是弦,CDAA,垂足M。求证:AM=MA,弧AD=弧AD,弧AC=弧AC。问题5 如上图,若直径CD平分弦,则直径CD是否

    7、垂直且平分弦所对的两条弧?如何证明?已知:在O中,CD是直径,AA是弦,AM=MA。求证:CDAA,弧AD=弧AD,弧AC=弧AC。探究新知 圆的轴对称性:圆是轴对称图形,它有无数条对称轴。过圆心的任意一条直线都是它的对称轴。由圆的轴对称性易得垂径定理:直径AB所在的直线是线段CD的中垂线。垂径定理:垂直于弦的直径平分弦并平分弦所对的两条弧如图所示:若AB是O的直径,CDAB于E则CEED 推论:平分弦(不是直径)的直径垂直于该弦,且平分该弦所对的两条弧。事实上:在垂径定理中,对于条件:直径弦与直径垂直直径平分弦直径平分弦所对的劣弧直径平分弦所对的优弧这五条中,知道其中任意两条便可推出其余三条

    8、。垂径定理的应用相当广泛,主要表现在以下三方面:计算功能:如图:构造以半径R、弦AB(a)和弦心距OE(d)的直角三角形分析:在RtAOE中,由已知边、角求未知边、角,进而求出弦长AB和圆的直径CD的长。注:过圆心O作弦AB的垂线段OE,垂线段OE称为弦心距。证明功能:如图:AB是O的直径,EF是弦,BCEF于C,ADEF于D。求证:CEFD分析:通过作弦心距OM易得OMBCAD又由AOOB得出CMMD,再根据垂径定理得到EMMF,进而得出CEFD 这一结论。说明:此题还可以进行变化,讨论如果弦EF与直径AB相交,结论是否仍然成立?作图功能:例如:把已知弧二等分,四等分等。作法:(1)连结AB

    9、;(2)作AB的中垂线交于C,则点C为的中点;(3)若再连结AC,CB,分别作AC,CB的中垂线交于D、E, 则D、C、E把四等分。值得注意的是:见如下反例点D、C、E是的四等分点吗?你能说明其中的理由吗?应用新知例1:如图,已知在O中,AB、CD两弦互相垂直于E,AB被分成4 cm和10 cm两段, (1)求圆心O到CD的距离;(2)若O半径为8 cm,求CD的长是多少? 分析: (1)作OGCD于G,由垂径定理先求出AF的长,进而求得OG的长,就是圆心O到CD的距离;(2)在RtODG中,由勾股定理可求DG的长,再由垂径定理可求得CD的长。例2: 如图,弧AB所在圆的圆心是点O,过O作OC

    10、AB于点D,若CD=4,弦AB=16,求此圆的半径。解:设圆的半径为R,由已知条件得到OD=R4,AD=8。在RtADO中,即。解得R10。即此圆的半径是10追问:现在能解决课前提出的赵州桥问题了吗?巩固新知练习1 如图,一条公路的转弯处是一段圆弦(即图中弧CD ,点O是弧CD的圆心,其中CD=600m,E为弧CD上一点,且OECD,垂足为F,EF=90m,求这段弯路的半径。练习2 如下图,某条河上有一座圆弧形拱桥ACB,桥下面水面宽度AB为7。2米,桥的最高处点C离水面的高度2。4米。现在有一艘宽3米,船舱顶部为方形并高出水面2米的货船要经过这里,问:这艘船是否能够通过这座拱桥?说明理由。1

    11、.3 弧、弦、圆心角问题引入问题1 (1)平行四边形绕对角线交点旋转180度后,你发现了什么?圆绕圆心O旋转180度后你发现了什么?(2)平行四边形绕对角线交点旋转任意一个角度后,你发现了什么?把圆绕圆心O旋转度任意一个角度后,你发现了什么?问题2 如图所示,AOB的顶点在圆心,这样的角叫做什么名字呢?结论:顶点在圆心的角叫做圆心角。追问:下列哪个图形中阴影部分的角是圆心角?问题3 如图所示的O中,分别作相等的圆心角AOB和AOB,将圆心角AOB绕圆心O旋转到的位置,你能发现哪些等量关系?为什么?探究新知追问1:在等圆中,相等的圆心角所对的弧、弦仍然相等吗?请同学们现在动手做一做。因此,我们可

    12、以得到下面的定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。同样,还可以得到:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等。在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等。追问2:定理中去掉“在同圆或等圆中”这个前提条件,还有同样的结论吗?请画图说明。应用新知例1:如图,在O中,弧AB=弧AC,ACB60。求证:AOB=AOC=BOC。证明:弧AB=弧AC, AB=AC,ABC是等腰三角形。又 ACB60, ABC是等边三角形,AB=BC=CA。 AOB=AOC=BOC。例2:如图,在O中,AB、CD是两条弦,OEAB,OF

    13、CD,垂足分别为E,F。(1)如果AOB=COD,那么OE与OF的大小有什么关系?为什么?(2)如果OE=OF,那么弧AB与弧CD的大小有什么关系?AB与CD的大小有什么关系?为什么?AOB与COD呢?解:(1)如果AOB=COD,那么OE=OF。理由如下:AOB=COD,AB=CD。OEAB,OFCD,2AE=AB,2CF=CD。AE=CF。又OA=OC,RtOAERtOCF,OE=OF。(2)如果OE=OF,那么AB=CD,弧AB=弧CD,AOB=COD。理由如下:OA=OC,OE=OF,RtOAERtOCF,AE=CF。又OEAB,OFCD,2AE=AB,2CF=CD,AB=CD,弧AB

    14、=弧CD,AOB=COD。巩固新知练习1 如图,AB是O的直径,BC、CD、DA是O的弦,且BCCDDA,求BOD的度数。分析:由BCCDDA可以得到这三条弦所对的圆心角相等,所以考虑连接OC,得到AOD=DOC=BOC,而AB是直径,于是得到。练习2 如图,MN是O的直径,弦AB、CD相交于MN上的一点P,APM=CPM。(1)由以上条件,你认为AB和CD大小关系是什么,请说明理由。(2)如图,若交点P在O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由。1.4 圆周角问题引入问题1 在圆中,满足什么条件的角是圆心角?顶点在圆心的角叫做圆心角。问题2 在同圆或等圆中,弧、弦、

    15、圆心角之间有什么关系?在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等;在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等。问题3 足球训练场上教练在球门前划了一个圆圈,进行无人防守的射门训练。如图,甲、乙两名运动员分别在C、D两地,他们争论不休,都说自己所在位置对球门AB的张角大。如果请你来评判,你知道他们的位置对球门AB的张角大小吗?探究新知问题4 上图中的C、D与我们前面所学的圆心角有什么区别?这样的角称之为什么角?顶点不同,圆心角的顶点在圆心,C、D的顶点在圆上。圆周角定义:顶点在圆

    16、上,并且两边都和圆相交的角叫圆周角。特征:角的顶点在圆上;角的两边都与圆相交。追问:下列哪个图形中的角是圆周角?问题5 如图,画弧AB所对的圆心角,然后再画同弧AB所对的圆周角。你能画多少个同一条弧所对的圆心角?圆周角呢?追问1:量一量你所画的不同的圆周角的度数,你有什么发现?追问2:量一量你所画的圆心角的度数,又有什么发现?追问3:你得出了什么猜想?同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半。追问4:如何验证你的猜想?根据圆周角与圆心的位置,分成三种情况:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周角的外部。(1)设圆周角ABC的一边BC是O的

    17、直径,如图所示:AOC是ABO的外角,AOC=ABO+BAO。OA=OB,ABO=BAO,AOC=2ABO,ABC=AOC(2)如图,圆周角ABC的两边AB、BC在一条直径OD的两侧,那么吗?请同学们独立完成这道题的说明过程。(3)如图,圆周角ABC的两边AB、BC在一条直径OD的同侧,那么吗?请同学们独立完成证明。从(1)、 (2)、 (3)我们可以总结归纳出圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。进一步,我们还可以得到下面的推导:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径。问题6 如图,点A、B、C、D在同一个圆上,四边形A

    18、BCD的对角线把4个内角分成8个角,这些角中哪些是相等的角?追问1:四边形ABCD中,A+C与B+D值分别等于多少度?追问2:如果一个多边形的所有顶点都在同一个圆上,这个多边形称作什么呢?定义:如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接四边形,这个圆叫做这个四边形的外接圆。追问3:通过上面的分析,你能归纳一下圆的内接四边形有什么性质吗?圆的内接四边形对角互补。应用新知例1:如图,AB是O的直径,BD是O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?分析:BD=CD,因为AB=AC,所以这个ABC是等腰三角形,要证明D是BC的中点,只要连接AD,证明AD

    19、是高或是BAC的平分线即可。例2:如图,O的直径 AB为10 cm,弦AC为6 cm,ACB的平分线交O于D,求BC、AD、BD的长。巩固新知练习1 (1)如图,点A、B、C在O上,点D在圆外,CD、BD分别交O于点E、F,比较BAC与BDC的大小,并说明理由。(2)移动点D到圆内,其它条件不变,此时BAC与BDC的大小又如何?并说明理由。练习2 如图,在圆内接四边形ABCD中,CD为BCA的外角的平分线,F为弧AD上一点,BC=AF,延长DF与BA的延长线交于E。求证:ABD为等腰三角形。分析:此题可先由角平分线定义得出MCD=DCA,再由同弧所对的圆周角相等得出DCA=DBA,由等量代换得

    20、出MCD=DBA。最后由圆内接四边形的性质得出MCD=BAD,即可得出结论。习题1.1 圆的两个重要性质一、选择题 1. AB、CD分别是两个圆中的弦,如果ABCD,那么的关系是( )A. B. C. D. 不能确定 2. 如图,O的半径为5,AB为弦,OCAB,垂足为C。若OC3,则弦AB的长为( ) A. 4B. 6C. 8D. 10 3. 半径为6的O内一点D到O的距离为3,则过D点的最短弦长为( )A. 3B. C. 6D. 无最短弦 4. O的半径为6,弦长为一元二次方程的一根,则弦心距及弦所对的圆心角为( )A. 和30B. 和60 C. 3和30D .3和60二、填空题 1. 已

    21、知:如图,O的直径AB15,弦CDAB于点E,BE3,则CD的长为_。 2. 已知:CD为O的直径,弦AB交CD于E,AEBE,AB6,CE1,则O的半径长为_。 3. 如图,在O中,如果,那么AB_2AC。(填“”、“”或“”) 4. 如图,将O沿着弦AB翻折,劣弧恰好经过圆心O,若O的半径为4,则弦AB的长度等于_。三、解答题1. 已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点,试比较AC与BD长度的大小,并说明理由。 2. 已知:如图,ABC是等边三角形,BC是O的直径,AB、AC边分别交O于D、E两点.求证: 3. 如图,在O中,P是弦AB上一点,AB10cm,

    22、PB4cm,OP2.5cm,求O的周长。一、选择题 1. D2. C3. C4. D二、填空题 1. 122. 5 3. 4. 三、解答题1. ACBD.理由:过O点作OMAB于M,则MCMD,MAMB,所以ACBD 2. 证明:ABC是等边三角形 BC60 连结DO、EO BODO,COOE BOD和COE是等边三角形 BODDOECOE60 3. 作OCAB于C,连结AO AB10cm,ACCB5cm PB4cm,CP1cm OP2.5cm,由勾股定理得 在RtAOC中, O的周长为。习题1.2 圆中有关的角一、选择题1如果两个圆心角相等,那么( )A这两个圆心角所对的弦相等;B这两个圆心

    23、角所对的弧相等C这两个圆心角所对的弦的弦心距相等;D以上说法都不对2.下列语句中不正确的有( )相等的圆心角所对的弧相等 平分弦的直径垂直于弦 圆是轴对称图形,任何一条直径所在直线都是它的对称轴 长度相等的两条弧是等弧A.3个 B.2个 C.1个 D.以上都不对3.已知、是同圆的两段弧,且=2,则弦AB与CD之间的关系为( )A.AB=2CD B.AB2CD D.不能确定4. 如图,AB是 O的直径,C,D是上的三等分点,AOE=60,则COE是( )A 40 B. 60 C. 80 D. 120 5、如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分BAC,则AD的长为()AcmBc

    24、mCcmD4cm6.在O中,圆心角AOB=90,点O到弦AB的距离为4,则O的直径的长为( )A.4 B.8 C.24 D.167.如图,在O中,若C是的中点,则图中与BAC相等的角有( )A.1个 B.2 个 C.3个 D.4个CBDOA8.如图,ABC内接于O,A=40,则BOC的度数为( ) ACBOA. 20 B. 40 C. 60 D.809.如图,AB是O的直径,点C在O上,若A=40 ,则B的度数为( )A80 B60 C50 D40 10. 如图,C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内C上一点,BMO=120,则C的半径为( )A6 B

    25、5 C3 D二、填空题1.已知圆O的半径为5,弦AB的长为5,则弦AB所对的圆心角AOB= .2. 如图,AB是 O的直径,=,A=25, 则BOD= .3.在O中,弦AB所对的劣弧为圆周的,圆的半径等于12,则圆心角AOB ;弦AB的长为 .4.如图,在O中,B=70,则A等于 5如图,点A、B、C在O上,AOC=60,则ABC的度数是 6如图,点A、B、C、D在O上,OBAC,若BOC=56,则ADB= 度7.已知如图,四边形ABCD内接于O,若A60,则DCE .8. 如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方

    26、向以每秒3度的速度旋转,CP与量角器的半圆弧交于点E,第24秒,点E在量角器上对应的读数是 度三、解答题1、如图,在O中 ,AB =AC,ACB=60,求证AOBBOCAOC.2、如图,在O中,AB、CD是两条弦,OEAB,OFCD,垂足分别为EF (1)如果AOB=COD,那么OE与OF的大小有什么关系?为什么?(2)如果OE=OF,那么与的大小有什么关系?AB与CD的大小有什么关系?为什么?AOB与COD呢?3、如图,O的直径AB为10cm,弦AC为6cm,ACB的平分线交O于D,求BC,AD,BD的长.4. 如图,AB为O的直径,点C在O上,延长BC至点D,使DC=CB,延长DA与O的另

    27、一个交点为E,连接AC,CE(1)求证:B=D;(2)若AB=4,BCAC=2,求CE的长答案选择1D 2.C 3.B 4. C 5、A 6.B 7.C 8.D 9.C 10.C填空1. 602.50 3.90, 12 .4. 40 51506257.608. 144解答2、 解:(1)如果AOB=COD,那么OE=OF 理由是:AOB=COD AB=CD OEAB,OFCD AE=AB,CF=CD AE=CF 又OA=OC RtOAERtOCF OE=OF (2)如果OE=OF,那么AB=CD,=,AOB=COD 理由是: OA=OC,OE=OF RtOAERtOCF AE=CF 又OEAB,OFCD AE=AB,CF=CD AB=2AE,CD=2CF AB=CD =,AOB=COD3、4.(1)证明:AB为O的直径,ACB=90,ACBC,DC=CB,AD=AB,B=D;(2)解:设BC=x,则AC=x2,在RtABC中,AC2+BC2=AB2,(x2)2+x2=42,解得:x1=1+,x2=1(舍去),B=E,B=D,D=E,CD=CE,CD=CB,CE=CB=1+

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教版 九年级上册 新初三暑假衔接课程 圆 第一、二课时 含习题和答案.docx
    链接地址:https://www.ketangku.com/wenku/file-858167.html
    相关资源 更多
  • 四川省内江市第六中学2020-2021学年高一上学期期中考试英语试卷 WORD版含答案.docx四川省内江市第六中学2020-2021学年高一上学期期中考试英语试卷 WORD版含答案.docx
  • 四川省内江市第六中学2020-2021学年高一上学期期中考试物理试卷 WORD版含答案.docx四川省内江市第六中学2020-2021学年高一上学期期中考试物理试卷 WORD版含答案.docx
  • 四川省内江市第六中学2020-2021学年高一上学期期中考试地理试卷 WORD版含答案.docx四川省内江市第六中学2020-2021学年高一上学期期中考试地理试卷 WORD版含答案.docx
  • 四川省内江市第六中学2020-2021学年高一上学期期中考试历史试卷 WORD版含答案.docx四川省内江市第六中学2020-2021学年高一上学期期中考试历史试卷 WORD版含答案.docx
  • 四川省内江市第六中学2020-2021学年高一上学期1月月考英语试题 WORD版含答案.docx四川省内江市第六中学2020-2021学年高一上学期1月月考英语试题 WORD版含答案.docx
  • 四川省内江市第六中学2019_2020学年高一物理下学期入学考试试题.docx四川省内江市第六中学2019_2020学年高一物理下学期入学考试试题.docx
  • 四川省内江市第六中学2019-2020高一下学期入学考试物理试卷 WORD版含答案.docx四川省内江市第六中学2019-2020高一下学期入学考试物理试卷 WORD版含答案.docx
  • 四川省内江市第六中学2019-2020学年高二下学期入学考试英语试卷 PDF版含答案.docx四川省内江市第六中学2019-2020学年高二下学期入学考试英语试卷 PDF版含答案.docx
  • 四川省内江市第六中学2019-2020学年高一物理下学期入学考试试题.docx四川省内江市第六中学2019-2020学年高一物理下学期入学考试试题.docx
  • 四川省内江市第六中学2019-2020学年高一7月月考(期末模拟)历史试题 WORD版含答案.docx四川省内江市第六中学2019-2020学年高一7月月考(期末模拟)历史试题 WORD版含答案.docx
  • 四川省内江市第六中学2017-2018学年七年级下学期期中考道德与法治试题(扫描版无答案).docx四川省内江市第六中学2017-2018学年七年级下学期期中考道德与法治试题(扫描版无答案).docx
  • 四川省内江市第六中学2017-2018学年七年级下学期期中考历史试题(扫描版无答案).docx四川省内江市第六中学2017-2018学年七年级下学期期中考历史试题(扫描版无答案).docx
  • 四川省内江市第二中学2024届高三上学期12月月考数学(文)试题(Word版附解析).docx四川省内江市第二中学2024届高三上学期12月月考数学(文)试题(Word版附解析).docx
  • 四川省内江市第二中学2023届高三上学期第三次模拟政治试题 WORD版含解析.docx四川省内江市第二中学2023届高三上学期第三次模拟政治试题 WORD版含解析.docx
  • 四川省内江市第二中学2023届高三上学期一模模拟训练政治试题(四)WORD版含答案.docx四川省内江市第二中学2023届高三上学期一模模拟训练政治试题(四)WORD版含答案.docx
  • 四川省内江市第二中学2023届高三上学期一模模拟训练政治试题(六)WORD版含答案.docx四川省内江市第二中学2023届高三上学期一模模拟训练政治试题(六)WORD版含答案.docx
  • 四川省内江市第二中学2023届高三上学期一模模拟训练政治试题(五)WORD版含答案.docx四川省内江市第二中学2023届高三上学期一模模拟训练政治试题(五)WORD版含答案.docx
  • 四川省内江市第二中学2023届高三上学期一模模拟训练政治试题(二)WORD版含答案.docx四川省内江市第二中学2023届高三上学期一模模拟训练政治试题(二)WORD版含答案.docx
  • 四川省内江市第二中学2023届高三上学期一模模拟训练政治试题(九)WORD版含答案.docx四川省内江市第二中学2023届高三上学期一模模拟训练政治试题(九)WORD版含答案.docx
  • 四川省内江市第二中学2023届高三上学期一模模拟训练政治试题(三)WORD版含答案.docx四川省内江市第二中学2023届高三上学期一模模拟训练政治试题(三)WORD版含答案.docx
  • 四川省内江市第二中学2023届高三上学期一模模拟训练政治试题(一)WORD版含答案.docx四川省内江市第二中学2023届高三上学期一模模拟训练政治试题(一)WORD版含答案.docx
  • 四川省内江市第二中学2023届高三上学期一模模拟训练政治试题(一) WORD版含解析.docx四川省内江市第二中学2023届高三上学期一模模拟训练政治试题(一) WORD版含解析.docx
  • 四川省内江市第二中学2023-2024学年高二英语上学期第一次月考试题(Word版附解析).docx四川省内江市第二中学2023-2024学年高二英语上学期第一次月考试题(Word版附解析).docx
  • 四川省内江市第二中学2023-2024学年高二物理上学期第一次月考试题(Word版附解析).docx四川省内江市第二中学2023-2024学年高二物理上学期第一次月考试题(Word版附解析).docx
  • 四川省内江市第二中学2023-2024学年高二数学上学期10月月考试题(Word版附解析).docx四川省内江市第二中学2023-2024学年高二数学上学期10月月考试题(Word版附解析).docx
  • 四川省内江市第二中学2023-2024学年高二上学期期中生物试题(Word版附解析).docx四川省内江市第二中学2023-2024学年高二上学期期中生物试题(Word版附解析).docx
  • 四川省内江市第二中学2023-2024学年高二上学期期中物理试题(Word版附解析).docx四川省内江市第二中学2023-2024学年高二上学期期中物理试题(Word版附解析).docx
  • 四川省内江市第二中学2023-2024学年高二上学期期中数学试题(Word版附解析).docx四川省内江市第二中学2023-2024学年高二上学期期中数学试题(Word版附解析).docx
  • 四川省内江市第二中学2023-2024学年高二上学期12月月考历史试题(Word版附解析).docx四川省内江市第二中学2023-2024学年高二上学期12月月考历史试题(Word版附解析).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1