分享
分享赚钱 收藏 举报 版权申诉 / 21

类型人教版七年级数学上册第四章几何图形初步综合练习练习题(解析版).docx

  • 上传人:a****
  • 文档编号:864711
  • 上传时间:2025-12-17
  • 格式:DOCX
  • 页数:21
  • 大小:235.36KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    人教版 七年 级数 上册 第四 几何图形 初步 综合 练习 练习题 解析
    资源描述:

    1、人教版七年级数学上册第四章几何图形初步综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将如图所示的直棱柱展开,下列各示意图中不可能是它的表面展开图的是()ABCD2、如图所示,COD的顶点O在直线

    2、AB上,OE平分COD,OF平分AOD,已知COD90,BOC,则EOF的度数为()A90+B90+C45+D903、下列说法正确的是()A大于且小于的角是锐角B大于的角是钝角C大于且小于的角是锐角或钝角D直角既是锐角也是钝角4、由5个棱长为1的小正方体组成的几何体如图放置,一面着地,两面靠墙如果要将露出来的部分涂色,则涂色部分的面积为()A9B11C14D185、若一个棱柱有7个面,则它是()A七棱柱B六棱柱C五棱柱D四棱柱6、数轴上,点对应的数是,点对应的数是,点对应的数是0.动点、从、同时出发,分别以每秒3个单位和每秒1个单位的速度向右运动在运动过程中,下列数量关系一定成立的是()ABC

    3、D7、数轴上,点A、B分别表示1、7,则线段AB的中点C表示的数是()A2B3C4D58、已知,如果用10倍的放大镜看,这个角的度数将()A缩小10倍B不变C扩大10倍D扩大100倍9、下列说法中:(1)角的两边越长,角就越大;(2)与表示同一个角;(3)在角一边的延长线上取一点D;(4)角可以看作由一条射线绕着它的端点旋转而形成的图形错误的个数是()A1个B2个C3个D4个10、互不重合的A、B、C三点在同一直线上,已知AC2a+1,BCa+4,AB3a,这三点的位置关系是()A点A在B、C两点之间B点B在A、C两点之间C点C在A、B两点之间D无法确定第卷(非选择题 70分)二、填空题(5小

    4、题,每小题4分,共计20分)1、将一个正方体木块涂成红色,然后如图把它的棱三等分,再沿等分线把正方体切开,可以得到27个小正方体,其中三面涂色的小正方体有8个,两面涂色的小正方体有12个,一面涂色的小正方体有6个,各面都没有涂色的小正方体有1个;现将这个正方体的棱n等分,如果得到各面都没有涂色的小正方体216个,那么n的值为_2、如图,点A,B,C在数轴上表示的有理数分别为a,b,c,点C是AB的中点,原点O是BC的中点,现给出下列等式:;其中正确的等式序号是_3、如图,则射线表示是南偏东_的方向4、如图,将两块直角三角板的直角顶点重合为如图所示的形状,若,则_5、如图所示,点B,O,D在同一

    5、直线上,若,则的度数为_三、解答题(5小题,每小题10分,共计50分)1、如图,点C在线段AB上,点M、N分别是线段AC、BC的中点(1)若CNAB2cm,求线段MN的长度;(2)若AC+BCacm,其他条件不变,请猜想线段MN的长度,并说明理由;(3)若点C在线段AB的延长线上,ACp,BCq,其它条件不变,则线段MN的长度会有变化吗?若有变化,请直接写出结果,不说明理由2、如图,O在直线AC上,OD是AOB的平分线,OE在BOC内(1)若OE是BOC的平分线,则有DOE=90,试说明理由;(2)若BOE=EOC,DOE=72,求EOC的度数3、如图所示,C是线段AB上的一点,D是AC的中点

    6、,E是BC的中点,如果AB=9cm,AC=5cm.求:AD的长;DE的长.4、用阴影表示的内部5、已知AOB100,BOC60,OM平分AOB,ON平分BOC,求MON的度数-参考答案-一、单选题1、D【解析】【分析】由直棱柱展开图的特征判断即可【详解】解:图中棱柱展开后,两个三角形的面不可能位于同一侧,因此D选项中的图不是它的表面展开图;故选D【考点】本题考查了常见几何体的展开图,解决本题的关键是牢记三棱柱展开图的特点,即其两个三角形的面不可能位于展开图中侧面长方形的同一侧即可2、B【解析】【分析】先利用COD90,BOC,求出BOD的度数,再求出AOD的度数,利用角平分线,分别求出FOD和

    7、EOD的度数,相加即可【详解】解:COD90,BOC,BOD90-BOC90-,AOD180-BOD90+,OF平分AOD,OE平分COD,EOF=FOD+DOE=90+;故选:B【考点】本题考查了角平分线的计算,解题关键是准确识图,弄清角之间的和差关系3、A【解析】【分析】根据锐角、直角、钝角的概念逐个判断即可【详解】解:A、大于且小于的角是锐角,故A选项正确;B、大于且小于的角是钝角,故B选项错误;C、大于且小于的角是锐角、直角或钝角,故C选项错误;D、直角既不是锐角也不是钝角,故D选项错误,故选:A【考点】本题考查了锐角、直角、钝角的概念,熟练掌握相关概念是解决本题的关键4、B【解析】【

    8、详解】分析:由涂色部分面积是从上、前、右三个方向所涂面积相加,据此可得详解:由图可知涂色部分是从上、前、右三个方向所涂面积相加,即涂色部分面积为4+4+3=11,故选B点睛:本题主要考查几何体的表面积,解题的关键是掌握涂色部分是从上、前、右三个方向所涂面积相加的结果5、C【解析】【分析】根据棱柱有两个底面求出侧面数,即可选择【详解】棱柱必有两个底面,则剩下7-2=5个面是侧面,所以为五棱柱故选C【考点】本题考查认识立体图形棱柱,解题的关键是知道棱柱必有两个底面6、A【解析】【分析】设运动时间为t秒,根据题意可知AP=3t,BQ=t,AB=2,然后分类讨论:当动点P、Q在点O左侧运动时,当动点P

    9、、Q运动到点O右侧时,利用各线段之间的和、差关系即可解答. 【详解】解:设运动时间为t秒,由题意可知: AP=3t, BQ=t,AB=|-6-(-2)|=4,BO=|-2-0|=2,当动点P、Q在点O左侧运动时,PQ=AB-AP+BQ=4-3t+t=2(2-t),OQ= BO- BQ=2-t,PQ= 2OQ ;当动点P、Q运动到点O右侧时,PQ=AP-AB-BQ=3t-4-t=2(t-2),OQ=BQ- BO=t-2,PQ= 2OQ,综上所述,在运动过程中,线段PQ的长度始终是线段OQ的长的2倍,即PQ= 2OQ一定成立.故选: A.【考点】本题考查了数轴上的动点问题及数轴上两点间的距离,解题

    10、时注意分类讨论的运用.7、B【解析】【分析】数轴上点A所表示的数为a,点B所表示的数为b,则AB的中点所表示的数为【详解】解:线段AB的中点C表示的数为:3,故选:B【考点】考查数轴表示数的意义和方法,掌握中点所表示的数的计算方法是得出正确答案的前提8、B【解析】【分析】根据角是从同一点引出的两条射线组成的图形它的大小与图形的大小无关,只与两条射线形成的夹角有关系,直接判断即可【详解】解:角的大小只与角的两边张开的大小有关,放大镜没有改变顶点的位置和两条射线的方向,所以用10倍放大镜观察这个角还是30度故选:B【考点】本题考查了角的概念解题关键是掌握角的概念:从同一点引出的两条射线组成的图形叫

    11、做角,明确角的大小只与角的两边张开的大小有关9、B【解析】【分析】由共一个端点的两条射线组成的图形叫做角,角也可以看作由一条射线绕着它的端点旋转而形成的图形,角的大小与角的两边张开的程度有关;根据角的概念、表示及大小逐一进行判断即可【详解】(1)角的大小与角的两边张开的程度有关,与角的两边长短无关,故说法错误;(2)与表示同一个角,此说法正确;(3)角的两边是两条射线,射线是向一端无限延伸的,故此说法错误;(4)此说法正确;所以错误的有2个故选:B【考点】本题考查了角的概念、角的大小、角的表示等知识,掌握这些知识是关键10、A【解析】【分析】分别对每种情况进行讨论,看a的值是否满足条件再进行判

    12、断【详解】解:当点A在B、C两点之间,则满足,即,解得:,符合题意,故选项A正确;点B在A、C两点之间,则满足,即,解得:,不符合题意,故选项B错误;点C在A、B两点之间,则满足,即,解得:a无解,不符合题意,故选项C错误;故选项D错误;故选:A【考点】本题主要考查了线段的和与差及一元一次方程的解法,分类讨论并列出对应的式子是解本题的关键二、填空题1、8【解析】【分析】求出没有涂色的部分的棱长,进而求出原正方体的棱长,确定n的值即可【详解】解:666=216,没有涂色的小正方体所组成的大正方体的棱长为6,n=6+1+1=8,故答案为:8【点睛】本题考查认识立体图形,理解没有涂色的小正方体的棱长

    13、与原正方体的棱长之间的关系是正确解答的关键2、【解析】【分析】先根据数轴的性质、线段中点的定义可得,再根据绝对值的性质逐个判断即可得【详解】解:由题意得:,则,即等式正确;由得:,即等式正确;由得:,则,即,等式错误;,即等式正确;综上,正确的等式序号是,故答案为:【点睛】本题考查了数轴、线段中点、绝对值、整式的加减,熟练掌握数轴和绝对值运算是解题关键3、【解析】【分析】如图,利用互余的含义,先求解的大小,再根据方向角的含义可得答案.【详解】解:如图, 射线表示是南偏东的方向.故答案为:【点睛】本题考查的是互余的含义,方向角的含义,掌握“方向角的含义”是解本题的关键.4、43【解析】【分析】由

    14、题意可得AOB=COD=90,则可得AOD+BOC=180,即可求得结果【详解】解:AOB=COD=90AOC+BOC+BOD+BOC=180即AOD+BOC=180AOD=137BOC=43,故答案为:43【点睛】本题主要考查角的和差关系,根据角的和差关系,列出算式,是解题的关键5、116【解析】【分析】由图示可得,1与BOC互余,结合已知可求BOC,又因为2与COB互补,即可求出2的度数【详解】解:,AOC90,BOC64,2BOC180,2116故答案为:116【点睛】此题考查了余角和补角的知识,属于基础题,关键是掌握互余的两角之和为90,互补的两角之和为180三、解答题1、(1)MN5

    15、cm;(2)MNacm,见解析;(3)有变化,MN(pq)【解析】【分析】(1)由中点的性质得MCAC、CNBC,根据MNMC+CNAC+BC(AC+BC)可得答案;(2)由中点性质得MCAC、CNBC,根据MNMC+CN(AC+CB)可得答案;(3)根据中点的性质得MCAC、CNBC,结合图形依据MNMCCNACBC(ACBC)可得答案【详解】解:(1)CNAB2cm,AB10(cm),点M、N分别是AC、BC的中点,MCAC、CNBC,MNMC+CNAC+BC(AC+BC)AB5(cm);(2)M、N分别是AC、BC的中点,MCAC、CNBC,AC+CBacm,MNMC+CN(AC+CB)

    16、a(cm);(3)有变化,如图,M、N分别是AC、BC的中点,MCAC、CNBC,ACp,BCq,MNMCCNACBC(ACBC)(pq)【考点】本题主要考查两点间的距离,掌握线段的中点的性质、线段的和差运算是解题的关键2、(1)见解析;(2)72【解析】【分析】(1)根据角平分线的定义可以求得DOE=AOC=90;(2)设EOB=x度,EOC=2x度,把角用未知数表示出来,建立x的方程,用代数方法解几何问题是一种常用的方法【详解】(1)如图,因为OD是AOB的平分线,OE是BOC的平分线,所以BOD=AOB,BOE=BOC,所以DOE=(AOB+BOC)=AOC=90;(2)设EOB=x,则

    17、EOC=2x,则BOD=(1803x),则BOE+BOD=DOE,即x+(1803x)=72,解得x=36,故EOC=2x=72【考点】本题考查了角平分线的定义设未知数,把角用未知数表示出来,列方程组,求解角平分线的运用,为解此题起了一个过渡的作用3、(1)AD=cm;(2)DE=cm.【解析】【分析】(1)根据中点的定义ADAC计算即可;(2)根据DEDCCE,求出CD、CE即可解决问题.【详解】解:(1)AC5cm,D是AC中点,ADDCACcm,(2)AB9cm,AC5cm,BCABAC954cm,E是BC中点,CEBC2cm,DECDCE2cm【考点】本题考查的是两点间的距离,熟知各线

    18、段之间的和、差及倍数关系是解答此题的关键4、画图见解析【解析】【分析】直接根据题意作图即可【详解】阴影部分表示的内部如图所示:【考点】本题主要考查角的定义,熟练掌握概念是解题的关键5、20或80【解析】【详解】注意此题要分两种情况:当OC落在AOB的内部时,当OC落在AOB的外部时;利用角的和差关系计算,分两种情况计算:当OC落在AOB的内部时:OM平分AOB,AOMAOB10050,ON平分BOC,BONBOC6030,MONAOBAOMBON100503020,当OC落在AOB的外部时;OM平分AOB,ON平分BOC,BOMAOB10050,BONBOC6030,MONBOM+BON50+3080综上所述,MON的度数为20或80【考点】此题主要考查了角的计算,做题时要注意分情况讨论,不能片面的考虑一种情况,题目比较典型

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教版七年级数学上册第四章几何图形初步综合练习练习题(解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-864711.html
    相关资源 更多
  • 人教版数学四年级上学期期末综合素养提升卷及参考答案【实用】.docx人教版数学四年级上学期期末综合素养提升卷及参考答案【实用】.docx
  • 人教版数学四年级上学期期末综合素养提升卷及参考答案【培优】.docx人教版数学四年级上学期期末综合素养提升卷及参考答案【培优】.docx
  • 人教版数学四年级上学期期末综合素养提升卷及参考答案1套.docx人教版数学四年级上学期期末综合素养提升卷及参考答案1套.docx
  • 人教版数学四年级上学期期末综合素养提升卷及免费答案.docx人教版数学四年级上学期期末综合素养提升卷及免费答案.docx
  • 人教版数学四年级上学期期末综合素养提升卷及一套答案.docx人教版数学四年级上学期期末综合素养提升卷及一套答案.docx
  • 人教版数学四年级上学期期末综合素养提升卷及1套完整答案.docx人教版数学四年级上学期期末综合素养提升卷及1套完整答案.docx
  • 人教版数学四年级上学期期末综合素养提升卷及1套参考答案.docx人教版数学四年级上学期期末综合素养提升卷及1套参考答案.docx
  • 人教版数学四年级上学期期末综合素养提升卷参考答案.docx人教版数学四年级上学期期末综合素养提升卷参考答案.docx
  • 人教版数学四年级上学期期末综合素养提升卷加下载答案.docx人教版数学四年级上学期期末综合素养提升卷加下载答案.docx
  • 人教版数学四年级上学期期末综合素养提升卷下载.docx人教版数学四年级上学期期末综合素养提升卷下载.docx
  • 人教版数学四年级上学期期末综合素养提升卷【黄金题型】.docx人教版数学四年级上学期期末综合素养提升卷【黄金题型】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【重点】.docx人教版数学四年级上学期期末综合素养提升卷【重点】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【轻巧夺冠】.docx人教版数学四年级上学期期末综合素养提升卷【轻巧夺冠】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【能力提升】.docx人教版数学四年级上学期期末综合素养提升卷【能力提升】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【考点梳理】.docx人教版数学四年级上学期期末综合素养提升卷【考点梳理】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【网校专用】.docx人教版数学四年级上学期期末综合素养提升卷【网校专用】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【综合题】.docx人教版数学四年级上学期期末综合素养提升卷【综合题】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【综合卷】.docx人教版数学四年级上学期期末综合素养提升卷【综合卷】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【精练】.docx人教版数学四年级上学期期末综合素养提升卷【精练】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【真题汇编】.docx人教版数学四年级上学期期末综合素养提升卷【真题汇编】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【最新】.docx人教版数学四年级上学期期末综合素养提升卷【最新】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【易错题】.docx人教版数学四年级上学期期末综合素养提升卷【易错题】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【必考】.docx人教版数学四年级上学期期末综合素养提升卷【必考】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【必刷】.docx人教版数学四年级上学期期末综合素养提升卷【必刷】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【实验班】.docx人教版数学四年级上学期期末综合素养提升卷【实验班】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【学生专用】.docx人教版数学四年级上学期期末综合素养提升卷【学生专用】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【夺冠系列】.docx人教版数学四年级上学期期末综合素养提升卷【夺冠系列】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【夺冠】.docx人教版数学四年级上学期期末综合素养提升卷【夺冠】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【培优】.docx人教版数学四年级上学期期末综合素养提升卷【培优】.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1