分享
分享赚钱 收藏 举报 版权申诉 / 32

类型人教版九年级数学上册第二十三章旋转定向训练试题(含详解).docx

  • 上传人:a****
  • 文档编号:869377
  • 上传时间:2025-12-17
  • 格式:DOCX
  • 页数:32
  • 大小:1.01MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    人教版 九年级 数学 上册 第二十三 旋转 定向 训练 试题 详解
    资源描述:

    1、人教版九年级数学上册第二十三章旋转定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,矩形ABCD绕点A逆时针旋转(090)得到矩形ABCD,此时点B恰好在DC边上,若BBC=15,则的大小为(

    2、)A15B25C30D452、下面四个手机应用图标中是轴对称图形的是()ABCD3、如图,在中,将绕点顺时针旋转得到,点A、B的对应点分别是,点是边的中点,连接,则下列结论错误的是()AB,CD4、如图,将ABC绕点A逆时针旋转70得到ADE,点B、C的对应点分别为D、E,当点B、C、D、P在同一条直线上时,则PDE的度数为()A55B70C80D1105、如图,在中,将绕点顺时针旋转度得到,当点的对应点恰好落在边上时,则的长为()A1.6B1.8C2D2.66、下列运动形式属于旋转的是()A在空中上升的氢气球B飞驰的火车C时钟上钟摆的摆动D运动员掷出的标枪7、如图,将绕点顺时针旋转得到,使点

    3、的对应点恰好落在边上,点的对应点为,连接下列结论一定正确的是()ABCD8、下列图形中,既是轴对称图形,又是中心对称图形的是()ABCD9、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD10、如图,在小正三角形组成的网格中,已有个小正三角形涂黑,还需涂黑个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则的最小值为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点E是正方形ABCD边BC上一点,连接AE,将ABE绕着点A逆时针旋转到AFG的位置(点F在正方形ABCD内部),连接DG若AB10,BE6,则CH_ 2、两块等

    4、腰直角三角形纸片AOB和COD按图1所示放置,直角顶点重合在点O处,AB13,CD7保持纸片AOB不动,将纸片COD绕点O逆时针旋转a(090),如图2所示当BD与CD在同一直线上(如图3)时,则ABC的面积为_3、如图,在菱形中,将菱形绕点逆时针方向旋转,对应得到菱形,点在上,与交于点,则的长是_4、如图,P是正方形ABCD内一点,将绕点B顺时针方向旋转,能与重合,若,则_5、如图,ABC和DEC关于点C成中心对称,若AC1,AB2,BAC90,则AE的长是_三、解答题(5小题,每小题10分,共计50分)1、已知:如图,三角形ABM与三角形ACM关于直线AF成轴对称,三角形ABE与三角形DC

    5、E关于点E成中心对称,点E、D、M都在线段AF上,BM的延长线交CF于点P(1)求证:AC=CD;(2)若BAC=2MPC,请你判断F与MCD的数量关系,并说明理由2、如图,等腰中,点P为射线BC上一动点(不与点B、C重合),以点P为中心,将线段PC逆时针旋转角,得到线段PQ,连接、M为线段BQ的中点(1)若点P在线段BC上,且M恰好也为AP的中点,依题意在图1中补全图形:求出此时的值和的值;(2)写出一个的值,使得对于任意线段BC延长线上的点P,总有的值为定值,并证明;3、在RtABC中,AB=AC,BAC=90,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90得到线段A

    6、E探索:(1)连接EC,如图,试探索线段BC,CD,CE之间满足的等量关系,并证明结论;(2)如图,在四边形ABCD中,ABC=ACB=45,若BD=7,将边AD绕点A逆时针旋转90得到线段AE连接DE、CE,求线段CE的长(3)AD与CE交于点N,BD与CE交于点M,在(2)的条件下,试探究BD与CE的位置关系,并加以证明4、如图,点是的边上的动点,连接,并将线段绕点逆时针旋转得到线段(1)如图1,作,垂足在线段上,当时,判断点是否在直线上,并说明理由;(2)如图2,若,求以、为邻边的正方形的面积5、已知线段AB,如果将线段AB绕点A逆时针旋转90得到线段AC,则称点C为线段AB关于点A的逆

    7、转点点C为线段AB关于点A的逆转点的示意图如图1:(1)如图2,在正方形ABCD中,点_为线段BC关于点B的逆转点;(2)如图3,在平面直角坐标系xOy中,点P的坐标为(x,0),且x0,点E是y轴上一点,点F是线段EO关于点E的逆转点,点G是线段EP关于点E的逆转点,过逆转点G,F的直线与x轴交于点H补全图;判断过逆转点G,F的直线与x轴的位置关系并证明;若点E的坐标为(0,5),连接PF、PG,设PFG的面积为y,直接写出y与x之间的函数关系式,并写出自变量x的取值范围-参考答案-一、单选题1、C【解析】【分析】由矩形的性质,可知ABC90,再由旋转,可知ABB为等腰三角形,根据内角和求解

    8、即可.【详解】解:连接BB四边形ABCD是矩形,ABC=90,CBB=15,ABB=90-15=75,AB=AB,ABB=ABB=75,BAB=180-275=30,=30,故选:C【考点】本题考查旋转的性质,矩形的性质,等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题2、D【解析】【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可【详解】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确故选D【考点】本题考查的是轴对称图形,熟知轴对

    9、称图形是针对一个图形而言的,是一种具有特殊性质的图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键3、D【解析】【分析】根据旋转的性质可判断A;根据直角三角形的性质、三角形外角的性质、平行线的判定方法可判断B;根据平行四边形的判定与性质以及全等三角形的判定与性质可判断C;利用等腰三角形的性质和含30角的直角三角形的性质可判断D【详解】A将ABC绕点C顺时针旋转60得到DEC,BCE=ACD=60,CB=CE,BCE是等边三角形,BE=BC,故A正确; B点F是边AC中点,CF=BF=AF=AC,BCA=30,BA=AC,BF=AB=AF=CF,FCB=FBC=30,延长B

    10、F交CE于点H,则BHE=HBC+BCH=90,BHE=DEC=90,BF/ED,AB=DE,BF=DE,故B正确CBFED,BF=DE,四边形BEDF是平行四边形,BC=BE=DF, AB=CF, BC=DF,AC=CD,ABCCFD,故C正确;DACB=30, BCE=60,FCG=30,FG=CG,CG=2FGDCE=CDG=30,DG=CG,DG=2FG故D错误故选D【考点】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,含30角的直角边等于斜边的一半,以及平行四边形的判定与性质等知识,综合性较强,正确理解旋转性质是解题的关键4、B【解析】【分析】首先根据旋转的性

    11、质可得,AB=AD,据此即可求得,据此即可求得【详解】解:将ABC绕点A逆时针旋转70得到ADE,AB=AD,又点B、C、D、P在同一条直线上,故选:B【考点】本题考查了旋转的性质,等边对等角的应用,三角形内角和定理,熟练掌握和运用旋转的性质是解决本题的关键5、A【解析】【分析】由将ABC绕点A按顺时针旋转一定角度得到ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由B=60,可证得ABD是等边三角形,继而可得BD=AB=2,则可求得答案【详解】由旋转的性质可知,为等边三角形,故选A【考点】此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB6、C【解析】【分析】根据旋转的

    12、定义逐一进行判断即可得到正确的结论.【详解】解:在空气中上升的氢气球,飞驰的火车,运动员掷出标枪属于平移现象,时钟上钟摆的摆动属于旋转现象.故选:C.【考点】本题主要考查关于旋转的知识,题目比较简单,属于基础题目,大部分学生能够正确完成,熟练掌握旋转的定义是解决本题的关键.7、D【解析】【分析】利用旋转的性质得AC=CD,BC=EC,ACD=BCE,所以选项A、C不一定正确再根据等腰三角形的性质即可得出,所以选项D正确;再根据EBC=EBC+ABC=A+ABC=-ACB判断选项B不一定正确即可【详解】解:绕点顺时针旋转得到,AC=CD,BC=EC,ACD=BCE,A=CDA=;EBC=BEC=

    13、,选项A、C不一定正确,A =EBC,选项D正确EBC=EBC+ABC=A+ABC=-ACB不一定等于,选项B不一定正确;故选D【考点】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了等腰三角形的性质8、C【解析】【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解【详解】解:A是轴对称图形,不是中心对称图形,故本选项不符合题意;B既不是轴对称图形,又不是中心对称图形,故本选项不符合题意;C既是轴对称图形,又是中心对称图形,故本选项符合题意;D不是轴对称图形,是中心对称图形,故本选项不符合题意故选:C【考点

    14、】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合9、B【解析】【分析】利用轴对称图形和中心对称图形的定义逐项判断即可【详解】A是轴对称图形不是中心对称图形故A不符合题意B是轴对称图形也是中心对称图形故B符合题意C是轴对称图形但不是中心对称图形故C不符合题意D不是中心对称图形也不是轴对称图形故D不符合题意故选:B【考点】本题考查轴对称图形和中心对称图形的定义,根据选项灵活判断其图形是否符合题意是解本题的关键10、C【解析】【分析】由等边三角形有三条对称轴可得答案【详解】如图所示,n的最小值为3

    15、故选C【考点】本题考查了利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质二、填空题1、【解析】【分析】由“HL”可证,可得,由“AAS”可证,可得,可得,再由勾股定理可求AP、FN、DH,即可求解【详解】如图,连接AH,过点F作FNCD于点N,FPAD于点P,将ABE绕着点A逆时针旋转到AFG的位置,四边形ABCD是正方形,又,FNCD,FPAD,四边形PDNF是矩形,故答案为:【考点】本题考查了旋转的性质,正方形的性质、矩形的判定与性质,全等三角形的判定和性质及勾股定理,熟练掌握知识点是解题的关键2、30【解析】【分析】设AO与BC的交点为点G,根据等腰直角三角形的性质证

    16、AOCBOD,进而得出ABC是直角三角形,设ACx,BC=x+7,由勾股定理求出x,再计算ABC的面积即可【详解】解:设AO与BC的交点为点G,AOBCOD90,AOCDOB,在AOC和BOD中,AOCBOD(SAS),ACBD,CAODBO,DBOOGB90,OGBAGC,CAOAGC90,ACG90,CGAC,设ACx,则BD=AC=x,BC=x+7,BD、CD在同一直线上,BDAC,ABC是直角三角形,AC2BC2AB2,,解得x=5,即AC=5,BC=5+7=12,在直角三角形ABC中,S= ,故答案为:30【考点】本题考查旋转的性质、全等三角形的判定和性质、勾股定理、等腰直角三角形的

    17、性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题3、【解析】【分析】连接交于,由菱形的性质得出,由直角三角形的性质求出,得出,由旋转的性质得:,得出,证出,由直角三角形的性质得出,即可得出结果【详解】解:连接交于,如图所示:四边形是菱形,由旋转的性质得:,四边形是菱形,;故答案为【考点】考核知识点:菱形性质,旋转性质.解直角三角形是关键.4、【解析】【分析】根据旋转角相等可得,进而勾股定理求解即可【详解】解:四边形是正方形将绕点B顺时针方向旋转,能与重合,故答案为:【考点】本题考查了旋转的性质,勾股定理,求得旋转角相等且等于90是解题的关键5、2【解析】【分析】根据中心

    18、对称的性质AD=DE及D=90,由勾股定理即可求得AE的长【详解】DEC与ABC关于点C成中心对称,ABCDEC,ABDE2,ACDC1,DBAC90,AD2,D90,AE,故答案为【考点】本题考查了中心对称的性质,勾股定理等知识,关键中心对称性质的应用三、解答题1、见解析【解析】【分析】(1)利用中心对称图形的性质以及轴对称图形的性质得出全等三角形进而得出对应线段相等;(2)利用(1)中所求,进而得出对应角相等,进而得出答案【详解】(1)证明:ABM与ACM关于直线AF成轴对称,ABMACM,AB=AC,又ABE与DCE关于点E成中心对称,ABEDCE,AB=CD,AC=CD;(2)F=MC

    19、D.理由:由(1)可得BAE=CAE=CDE,CMA=BMA,BAC=2MPC,BMA=PMF,设MPC=,则BAE=CAE=CDE=,设BMA=,则PMF=CMA=,F=CPMPMF=,MCD=CDEDMC=,F=MCD.【考点】本题主要考查轴对称、中心对称性质和全等三角形的判定及性质.通过轴对称与中心对称的性质得出全等三角形的判定条件是解题的关键.2、 (1)见解析;(2),理由见解析【解析】【分析】(1)由题意,画出图形即可;连接AQ,证四边形ABPQ是平行四边形,得ABPC,再根据是等腰三角形即可求解(2)令,延长PM至N,使得MNPM,连接BN、AN、QN,证四边形BNQP是矩形,根

    20、据证,得出为等腰直角三角形,即可求解(1)如图所示,即为所求,连接AQ,如图所示,M为AP、BQ的中点,AM=PM,BM=QM,四边形ABPQ是平行四边形,ABPQ,AB/PQ,PC=PQ,ABPC,为等腰直角三角形,(2),延长PM至N,使得MNPM,连接BN、AN、QN,如图所示:M为线段BQ的中点,BM=QM,又MNPM,四边形BNQP是平行四边形,又CPQ=90,四边形BNQP是矩形,为等腰直角三角形,即,又AB=AC,即,即为等腰直角三角形,又,即的值为定值,当时,的值为定值【考点】本题是几何变换综合题,考查了等腰直角三角形、平行四边形的判定及性质、旋转的性质以及全等三角形的判定及性

    21、质,熟练利用辅助线构造平行四边形是解题的关键3、(1)BC=CE+DC,证明见解析;(2)7;(3)BDCE,证明见解析【解析】【分析】(1)根据BAC=DAE=90,得出BAD=CAE,证明BADCAE(SAS),得出BD=CE即可;(2)根据ABC=ACB=45,得出BAC=180-ABC-ACB=90,根据DAE=90,可证BAD=CAE,可证BADCAE,可得BD=CE=7;(3)由(2)得BADCAE得出ADB=AEC,根据EAD=90得出AEN+ANE=90根据对顶角性质得出ANE=DNM可求DNM+ADB=ANE+AEC=90即可【详解】证明:(1)结论:BC=CE+DC证明如下

    22、:BAC=DAE=90,BAD+DAC=DAC+CAE,BAD=CAE,BAD和CAE中,BADCAE(SAS),BD=CE,BC=BD+DC,BC=CE+DC ;(2)ABC=ACB=45,BAC=180-ABC-ACB=90,DAE=90,BAC+CAD=CAD+DAE,BAD=CAE,在BAD和CAE中,BADCAE(SAS),BD=CE=7;(3)结论:BDCE设EC与AD交于N,BD与CE交于M,如图2,由(2)得BADCAE, ADB=AEC, EAD=90,AEN+ANE=90,ANE=DNM , DNM+ADB=ANE+AEC=90,NMD=90,BDCE【考点】本题考查三角形

    23、全等判定与性质,图形性质性质,线段和差,直线位置关系,掌握三角形全等判定与性质,图形性质性质,线段和差,直线位置关系是解题关键4、(1)点在直线上,见解析;(2)18【解析】【分析】(1)根据,得到,可得线段逆时针旋转落在直线上,即可得解;(2)作于,得出,再根据平行线的性质得到,再根据直角三角形的性质计算即可;【详解】解:(1)结论:点在直线上;,即线段逆时针旋转落在直线上,即点在直线上(2)作于,即以、为邻边的正方形面积 【考点】本题主要考查了旋转综合题,结合平行线的性质计算是解题的关键5、(1)A;(2)补图见解析;GFx轴;证明见解析;y=【解析】【分析】(1)根据点C为线段AB关于点

    24、A的逆转点的定义判断即可(2)按题干定义补图即可结论:GFx轴证明GEFPEO(SAS),推出GFEEOP90可得结论分两种情形:如图41中,当0x5时,如图42中,当x5时,分别利用三角形的面积公式求解即可【详解】解:(1)由题意,点A是线段AB关于点B的逆转点,故答案为A(2)图形如图3所示结论:GFx轴理由:点F是线段EF关于点E的逆转点,点G是线段EP关于点E的逆转点,OEFPEG90,EGEP,EFEO,GEFPEO,GEFPEO(SAS),GFEEOP,OEOP,POE90,GFE90,OEFEFHEOH90,四边形EFHO是矩形,FHO90,FGx轴如图41中,当0x5时,E(0,5),OE5,四边形EFHO是矩形,EFEO,四边形EFHO是正方形,OHOE5,yFGPHx(5x)x2+x如图42中,当x5时,yFGPHx(x5)x2x综上所述,y=【考点】此题主要考查旋转,结合题干中新定义,按照旋转法则解题,涉及到求三角形面积问题

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教版九年级数学上册第二十三章旋转定向训练试题(含详解).docx
    链接地址:https://www.ketangku.com/wenku/file-869377.html
    相关资源 更多
  • 2012高一物理课件 第四章 机械能和能源 (粤教版必修2).ppt2012高一物理课件 第四章 机械能和能源 (粤教版必修2).ppt
  • 2012高一物理课件 7.10 能量守恒定律与能源 (人教版必修2).ppt2012高一物理课件 7.10 能量守恒定律与能源 (人教版必修2).ppt
  • 奇数和偶数(专项复习)六年级下册数学第一轮总复习人教版.docx奇数和偶数(专项复习)六年级下册数学第一轮总复习人教版.docx
  • 2012高一物理课件 6.4 超重与失重 24(鲁科版必修1).ppt2012高一物理课件 6.4 超重与失重 24(鲁科版必修1).ppt
  • 2012高一物理课件 6.4 超重与失重 23(鲁科版必修1).ppt2012高一物理课件 6.4 超重与失重 23(鲁科版必修1).ppt
  • 2012高一物理课件 6.4 超重与失重 20(鲁科版必修1).ppt2012高一物理课件 6.4 超重与失重 20(鲁科版必修1).ppt
  • 2012高一物理课件 6.4 超重与失重 19(鲁科版必修1).ppt2012高一物理课件 6.4 超重与失重 19(鲁科版必修1).ppt
  • 奇偶性与不等式讲义-2022届高三数学二轮复习 WORD版含答案.docx奇偶性与不等式讲义-2022届高三数学二轮复习 WORD版含答案.docx
  • 2012高一物理课件 6.4 超重与失重 13(鲁科版必修1).ppt2012高一物理课件 6.4 超重与失重 13(鲁科版必修1).ppt
  • 2012高一物理课件 6.3 牛顿第三定律 7(鲁科版必修1).ppt2012高一物理课件 6.3 牛顿第三定律 7(鲁科版必修1).ppt
  • 2012高一物理课件 6.3 牛顿第三定律 6(鲁科版必修1).ppt2012高一物理课件 6.3 牛顿第三定律 6(鲁科版必修1).ppt
  • 2012高一物理课件 6.3 牛顿第三定律 5(鲁科版必修1).ppt2012高一物理课件 6.3 牛顿第三定律 5(鲁科版必修1).ppt
  • 夺油争上产 安全系心中.docx夺油争上产 安全系心中.docx
  • 2012高一物理课件 6.3 牛顿第三定律 4(鲁科版必修1).ppt2012高一物理课件 6.3 牛顿第三定律 4(鲁科版必修1).ppt
  • 2012高一物理课件 6.3 牛顿第三定律 1(鲁科版必修1).ppt2012高一物理课件 6.3 牛顿第三定律 1(鲁科版必修1).ppt
  • 2012高一物理课件 6.2 牛顿第二定律 9(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 9(鲁科版必修1).ppt
  • 夺分锦囊06 2023年中考历史结论汇总 -【临考夺分手册】2023年中考历史考前冲刺锦囊.docx夺分锦囊06 2023年中考历史结论汇总 -【临考夺分手册】2023年中考历史考前冲刺锦囊.docx
  • 2012高一物理课件 6.2 牛顿第二定律 7(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 7(鲁科版必修1).ppt
  • 2012高一物理课件 6.2 牛顿第二定律 6(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 6(鲁科版必修1).ppt
  • 2012高一物理课件 6.2 牛顿第二定律 4(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 4(鲁科版必修1).ppt
  • 2012高一物理课件 6.2 牛顿第二定律 3(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 3(鲁科版必修1).ppt
  • 2012高一物理课件 6.2 牛顿第二定律 25(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 25(鲁科版必修1).ppt
  • 2012高一物理课件 6.2 牛顿第二定律 19(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 19(鲁科版必修1).ppt
  • 2012高一物理课件 6.2 牛顿第二定律 18(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 18(鲁科版必修1).ppt
  • 夸将军.docx夸将军.docx
  • 2012高一物理课件 6.2 牛顿第二定律 17(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 17(鲁科版必修1).ppt
  • 2012高一物理课件 6.2 牛顿第二定律 16(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 16(鲁科版必修1).ppt
  • 2012高一物理课件 6.2 牛顿第二定律 14(鲁科版必修1).ppt2012高一物理课件 6.2 牛顿第二定律 14(鲁科版必修1).ppt
  • 头部机械性伤害的应急处理.docx头部机械性伤害的应急处理.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1