分享
分享赚钱 收藏 举报 版权申诉 / 23

类型人教版九年级数学上册第二十五章概率初步同步测评试卷.docx

  • 上传人:a****
  • 文档编号:869498
  • 上传时间:2025-12-17
  • 格式:DOCX
  • 页数:23
  • 大小:323.73KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    人教版 九年级 数学 上册 第二 十五 概率 初步 同步 测评 试卷
    资源描述:

    1、人教版九年级数学上册第二十五章概率初步同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个

    2、球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在0.3,那么估计摸到黄球的概率为()A0.3B0.7C0.4D0.62、如图,两个转盘分别自由转动一次(当指针恰好指在分界线上时重转),当停止转动时,两个转盘的指针都指向3的概率为()ABCD3、从下列命题中,随机抽取一个是真命题的概率是()(1)无理数都是无限小数;(2)因式分解;(3)棱长是的正方体的表面展开图的周长一定是;(4)弧长是,面积是的扇形的圆心角是ABCD14、下列说法正确的是()A“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件B“打开电视机,正在播放乒乓球比赛”是必然事件C“面积相等的两个三角形全等

    3、”是不可能事件D投掷一枚质地均匀的硬币100次,正面朝上的次数一定是50次5、新冠疫情发生以来,为保证防控期间的口罩供应,某公司加紧转产,开设多条生产线争分夺秒赶制口罩,从最初转产时的陌生,到正式投产后达成日均生产100万个口罩的产能不仅效率高,而且口罩送检合格率也不断提升,真正体现了“大国速度”以下是质监局对一批口罩进行质量抽检的相关数据,统计如下:抽检数量n/个205010020050010002000500010000合格数量m/个194693185459922184045959213口罩合格率0.9500.9200.9300.9250.9180.9220.9200.9190.921下面

    4、四个推断合理的是()A当抽检口罩的数量是10000个时,口罩合格的数量是9213个,所以这批口罩中“口罩合格”的概率是0.921;B由于抽检口罩的数量分别是50和2000个时,口罩合格率均是0.920,所以可以估计这批口罩中“口罩合格”的概率是0.920;C随着抽检数量的增加,“口罩合格”的频率总在0.920附近摆动,显示出一定的稳定性,所以可以估计这批口罩中“口罩合格”的概率是0.920;D当抽检口罩的数量达到20000个时,“口罩合格”的概率一定是0.9216、一个不透明的袋中装有8个黄球,个红球,个白球,每个球除颜色外都相同任意摸出一个球,是黄球的概率与不是黄球的概率相同,下列与的关系一

    5、定正确的是()ABCD7、在一个不透明纸箱中放有除了数字不同外,其它完全相同2张卡片,分别标有数字1、2,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为()ABCD8、某校团支部组织部分共青团员开展学雷锋志愿者服务活动,每个志愿者都可以从以下三个项目中任选一项参加:敬老院做义工;文化广场地面保洁;路口文明岗值勤则小明和小慧选择参加同一项目的概率是()ABCD9、甲、乙是两个不透明的纸箱,甲中有三张标有数字,的卡片,乙中有三张标有数字,的卡片,卡片除所标数字外无其他差别,现制定一个游戏规则:从甲中任取一张卡片,将其数字记为,从乙中任取一张卡片,将其数字记为若,能使关

    6、于的一元二次方程有两个不相等的实数根,则甲获胜;否则乙获胜则乙获胜的概率为()ABCD10、下列事件是不可能发生的是()A随意掷一枚均匀的硬币两次,至少有一次反面朝上B随意掷两个均匀的骰子,朝上面的点数之和为1C今年冬天黑龙江会下雪D一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、有三张完全一样正面分别写有字母A,B,C的卡片将其背面朝上并洗匀,从中随机抽取一张,记下卡片上的字母后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的字母相同的概率是_2、一个小球在光滑度相同的地板上(如图)自由

    7、滚动,并随机地停留在某块方砖上,则它最终停留在黑砖上的概率是_ 3、小林掷一枚质地均匀的正方体骰子(骰子的每个面上分别标有1、2、3、4、5、6,他把第一次掷得的点数记为x,第二次掷得的点数记为y,则分别以这两次掷得的点数值为横、纵坐标的点恰好在直线上的概率是_4、某同学投掷一枚硬币,如果连续次都是正面朝上,则他第次抛掷硬币的结果是正面朝上的概率是_5、在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则估计口袋中白球大约有_个三、解答题(5小题,每小题10分,共计50分)1、在一个不透明的口袋里装有仅颜色不同的黑、

    8、白两种颜色的球20只,某学习小组做摸球实验将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据摸球的次数n1001502005008001000摸到白球的次数m5896116295484601摸到白球的频率0.580.640.580.590.6050.601(1)请你估计,当n很大时,摸到白球的频率将会接近 (精确到0.1)(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是 (3)试估算口袋中黑、白两种颜色的球有多少只2、 “共和国勋章”获得者钟南山院士说:按照疫苗保护率达到70%计算,中国的新冠疫苗覆盖率需要达到近80%,才有可能形成群体

    9、免疫,本着自愿的原则,18至60周岁符合身体条件的中国公民均可免费接种新冠疫苗居民甲、乙准备接种疫苗,其居住地及工作单位附近有两个大型医院和两个社区卫生服务中心均可免费接种疫苗,提供疫苗种类如下表:接种地点疫苗种类医院A新冠病毒灭活疫苗B重组新冠病毒疫苗(CHO细胞)社区卫生服务中心C新冠病毒灭活疫苗D重组新冠病毒疫苗(CHO细胞)若居民甲、乙均在A、B、C、D中随机独立选取一个接种点接种疫苗,且选择每个接种点的机会均等(提示:用A、B、C、D表示选取结果)(1)求居民甲接种的是新冠病毒灭活疫苗的概率;(2)请用列表或画树状图的方法求居民甲、乙接种的是相同种类疫苗的概率3、第24届冬季奥林匹克

    10、运动会于2022年2月4至20日在我国北京-张家口成功举办,其中张家口赛区设有四个冬奥会竞赛场馆,分别为:A云顶滑雪公园、B国家跳台滑雪中心、C国家越野滑雪中心、D国家冬季两项中心小明和小颖都是志愿者,他们被随机分配到这四个竞赛场馆中的任意一个场馆的可能性相同(1)小明被分配到D国家冬季两项中心场馆做志愿者的概率是多少?(2)利用画树状图或列表的方法,求小明和小颖被分配到同一场馆做志愿者的概率4、如图,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,

    11、其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A,B,C,D表示).5、阅读理解某市电力公司对居民用电设定如下两种收费方式:方式一:“分档”计算电费(见表一),按电量先计算第一档,超过的部分再计算第二档,依次类推,最后求和即为总电费表一:分档电价居民用电分档用电量x(度)电价(元/度)第一档0x2300.5第二档230x4200.55第三档x4200.8方式二:“分档+分时”计算电费(见表一、表二),即总电费等于“分档电费、峰时段增加的电费、谷时段减

    12、少的电费的总和”表二:分时电价峰谷时段电价差额(元/度)峰时段(08:0022:00)+0.03(每度电在各档电价基础上加价0.03元)谷时段(22:00次日08:00)0.2(每度电在各档电价基础上降低0.2元)例如:某用户该月用电总量500度,其中峰时段用电量300度,谷时段用电量200度,若该用户选择方式二缴费,则总电费为:2300.5+(420230)0.55+(500420)0.8+3000.03+200(0.2)252.5(元)问题解决已知小明家4月份的月用电量相当于全年的平均月用电量,现从他家4月份的日用电量数据中随机抽取7天作为样本,制作成如图表:日用电量峰点占比统计表编号A1

    13、A2A3A4A5A6A7每日峰时段用电量占比80%20%50%10%20%50%60%注:每日峰时段用电量占比100%(1)若从上述样本中随机抽取一天,求所抽取的日用电量为15度以上的概率;(2)若每月按30天计,请通过样本数据计算月用电费,帮小明决定选择哪一种方式缴费合算?-参考答案-一、单选题1、A【解析】【分析】根据利用频率估计概率得摸到黄球的频率稳定在0.3,进而可估计摸到黄球的概率【详解】通过大量重复摸球实验后发现,摸到黄球的频率稳定在0.3,估计摸到黄球的概率为0.3,故选:A【考点】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越

    14、来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率2、A【解析】【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与都指向3的情况数,继而求得答案【详解】解:列表如下: 12341234共有16种等可能的结果,两个转盘的指针都指向3的只有1种结果,两个转盘的指针都指向3的概率为,故选:A【考点】此题考查了树状图法与列表法求概率用到的知识点为:概率所求情况数与总情况数之比3、C【解析】【分析】分别判断各命题的真假,再利用概率公式求解.【详解】解:(1)无理数都是无限小数,是真命题,(2)因式分解,是真命题,(3)棱长是的正方体的表面展开图的周长一定是,是真命题,(4)设

    15、扇形半径为r,圆心角为n,弧长是,则=,则,面积是,则=,则360240,则,则n=360024=150,故扇形的圆心角是,是假命题,则随机抽取一个是真命题的概率是,故选C.【考点】本题考查了命题的真假,概率,扇形的弧长和面积,无理数,因式分解,正方体展开图,知识点较多,难度一般,解题的关键是运用所学知识判断各个命题的真假.4、A【解析】【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件【详解】解:A、“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件,故此选项正确;B、“打开电视机,正在播放乒乓球比赛” 是随机事件,故此选项错误;C、“面积相等的两个三角形全等” 是随机事件,故

    16、此选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数不一定是50次,故此选项错误;故选:A【考点】本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件5、C【解析】【分析】根据统计表中的数据和各个选项的说法可以判断是否正确,从而可以解答本题【详解】A、当抽检口罩的数量是10000个时,口罩合格的数量是9213个,这批口罩中“口罩合格”的概率不一定是0.921,故该选项错误;B、由于抽检口罩的数量分别是50和2000个时

    17、,口罩合格率均是0.920,这批口罩中“口罩合格”的概率不一定是0.920,故该选项错误;C、随着抽检数量的增加,“口罩合格”的频率总在0.920附近摆动,显示出一定的稳定性,所以可以估计这批口罩中“口罩合格”的概率是0.920,故该选项正确;D、当抽检口罩的数量达到20000个时,“口罩合格”的概率不一定是0.921,故该选项错误故选:C【考点】本题考查了利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答6、C【解析】【分析】先根据概率公式得出:任意摸出一个球,是黄球的概率与不是黄球的概率(用含m、n的代数式表示),然后由这两个概率相同可得m与n的关系【详解】解:一个不

    18、透明的袋中装有8个黄球,m个红球,n个白球,任意摸出一个球,是黄球的概率为:,不是黄球的概率为:,是黄球的概率与不是黄球的概率相同,m+n8故选:C【考点】此题考查了概率公式的应用,属于基础题型,解题时注意掌握概率=所求情况数与总情况数之比7、C【解析】【分析】利用列表法或树状图法找出所有出现的可能结果,再找出两次摸出的数字之和为奇数出现的可能结果即可求解【详解】1211+1=21+2=322+1=32+2=4从表中可知,共有4种等可能的结果,其中两次摸出的数字之和为奇数的有2种,所以两次摸出的数字之和为奇数的的概率是,故选:C【考点】本题考查了利用列表法或树状图法求概率,正确地列出表格或树状

    19、图是解题的关键注意:从中任意摸出一张,放回搅匀后再任意摸出一张8、A【解析】【分析】先根据题意画出树状图,然后再根据概率的计算公式进行计算即可【详解】解:根据题意画出树状图,如图所示:共有9种等可能的情况,其中小明和小慧选择参加同一项目的有3种情况,小明和小慧选择参加同一项目的概率为,故A正确故选:A【考点】本题主要考查了概率公式、画树状图或列表格求概率,根据题意画出树状图或列出表格,是解题的关键9、C【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,利用一元二次方程根的判别式,即可判定各种情况下根的情况,然后利用概率公式求解即可求得乙获胜的概率.【详解】(1)关于的一

    20、元二次方程有两个不相等的实数根,=b2-4a0,画树状图如下:由图可知,共有种等可能的结果,分别是a=,b=1,则=-10;a=,b=2,则=20;a=,b=1,则=0;a=,b=3,则=80;a=,b=2,则=30;a=1,b=1,则=-30;a=1,b=2,则=0;其中能使乙获胜的有种结果数,乙获胜的概率为,故选C【考点】本题考查的是用树状图法求概率,树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验10、B【解析】【分析】根据不可能事件的概念即可解答,在一定条件下必然不会发生的事件叫不可能事件.【详解】A. 随意掷一枚均匀的硬币两次,至少有一次反面朝上,可能发

    21、生,故本选项错误;B. 随意掷两个均匀的骰子,朝上面的点数之和为1,不可能发生,故本选项正确;C. 今年冬天黑龙江会下雪,可能发生,故本选项错误;D. 一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域,可能发生,故本选项错误.故选B.【考点】本题考查不可能事件,在一定条件下必然不会发生的事件叫不可能事件.二、填空题1、【解析】【分析】根据题意列出图表得出所有等情况数和抽取的两张卡片上的字母相同的情况数,然后根据概率公式即可得出答案【详解】解:根据题意列表如下:ABCAAABACABABBBCBCACBCCC共有9种等可能的结果数,其中两次抽出的卡片上的字母相同的

    22、有3种情况,所以P(抽取的两张卡片上的字母相同)【考点】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验2、【解析】【分析】小球停留在黑砖上的概率等于黑砖的总面积除以图形的总面积,从而可得答案.【详解】解:小球停留在黑砖上的概率 故答案为:【考点】本题考查的是简单随机事件的概率,掌握简单随机事件的概率公式是解题的关键.3、【解析】【分析】首先根据题意列出表格,然后由表格求得所有等可能的结果与点B(x,y)恰好在直线上的情况,再利用概率公式求得答案【详解】解:列表如

    23、下:第一次第二次1234561(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)共有36种等可能的结果,点B(x,y)恰好在直线上的有:(1,6),(2,4),(3,2),点B(x,y)恰好在直线上的概率是:故答案为:【考点】本题考查的是用列表法或树状图法求概率注意树状图法与列表

    24、法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率所求情况数与总情况数之比4、【解析】【分析】投掷一枚硬币,可能出现的两种情况:正面朝上或者正面朝下.每次出现的机会相同【详解】第5次掷硬币,出现正面朝上的机会和朝下的机会相同,都为.故答案为:.【考点】本题考查了概率公式,掌握概率等于所求情况数与总情况数之比是解题的关键5、15【解析】【分析】摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可【详解】设白球个数为:x个,摸到红色球的频率稳定在25%左右,口袋中得到红色球的概率为25%,解得:x=15,经检

    25、验,符合题意,即白球的个数为15个,故答案为:15【考点】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键三、解答题1、(1)0.6;(2),;(3)12,8【解析】【详解】试题分析:(1)本题需先根据表中的数据,估计出摸到白球的频率(2)本题根据摸到白球的频率即可求出摸到白球和黑球的概率(3)根据口袋中黑、白两种颜色的球的概率即可求出口袋中黑、白两种颜色的球有多少只试题解析:(1)根据题意可得当n很大时,摸到白球的频率将会接近0.6;(2)因为当n很大时,摸到白球的频率将会接近0.6;所以摸到白球的概率是;摸到黑球的概率是(3)因为摸到白球的概率是,摸到黑球的

    26、概率是,所以口袋中黑、白两种颜色的球有白球是个,黑球是个2、(1);(2)【解析】【分析】(1)利用概率公式直接计算即可;(2)先列表求解所有的等可能的结果数,再得到符合条件的结果数,从而利用概率公式进行计算即可.【详解】解:(1)由概率的含义可得:居民甲接种的是新冠病毒灭活疫苗的概率是 (2)列表如下: 由表中信息可得一共有种等可能的结果数,属于同种疫苗的结果数有:,共 种,所以居民甲、乙接种的是相同种类疫苗的概率为:【考点】本题考查的是随机事件的概率,利用列表法或画树状图求解概率,掌握列表的方法与画树状图的方法是解题的关键.3、 (1)(2)【解析】【分析】(1)直接由概率公式求解即可;(

    27、2)画树状图,共有16种等可能的结果,其中小明和小颖被分配到同一场馆做志愿者的结果有4种,再由概率公式求解即可(1)解:小明被分配到D国家冬季两项中心场馆做志愿者的概率是;(2)解:画树状图如下:共有16种等可能的结果,其中小明和小颖被分配到同一场馆做志愿者的结果有4种,小明和小颖被分配到同一场馆做志愿者的概率为【考点】此题考查了用树状图法求概率树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比4、(1).(2)公平【解析】【分析】(1)首先根据题意结合概率公式可得答案;(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形

    28、的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平【详解】解:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是;(2)列表得:共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,P(两张都是轴对称图形)=,因此这个游戏公平ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)5、 (1);(2)应选择方式二缴费合算【解析】【分析】(1)直接根据概率公式求解即可;(

    29、2)根据平均数的计算公式先求出每月峰用电量和谷用电量,然后进行比较,即可得出答案(1)解:所抽取的日用电量为15度以上的概率是:;(2)解:平均每天用电量是:=25(度),每月用电量是:2530=750(度),方式一收费:2300.5+1900.55+(750-420)0.8=483.5(元),方式二收费:(140.8+380.2+120.5+400.1+440.2+130.5+140.6)=7.5(度),每月峰用电量是:7.530=225(度),谷用电量为:750-225=525(度),收费为:483.5+2250.03-5250.2=385.25(元),483.5385.25,应选择方式二缴费合算【考点】本题主要考查了概率公式以及统计图,从统计图表中获的信息,分清谷时用电量与峰时用电量及收费档次是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教版九年级数学上册第二十五章概率初步同步测评试卷.docx
    链接地址:https://www.ketangku.com/wenku/file-869498.html
    相关资源 更多
  • 北师大版七年级数学上册第六章数据的收集与整理难点解析试题(含详解).docx北师大版七年级数学上册第六章数据的收集与整理难点解析试题(含详解).docx
  • 北师大版七年级数学上册第六章数据的收集与整理难点解析试题(含答案解析版).docx北师大版七年级数学上册第六章数据的收集与整理难点解析试题(含答案解析版).docx
  • 北师大版七年级数学上册第六章数据的收集与整理重点解析试卷(解析版).docx北师大版七年级数学上册第六章数据的收集与整理重点解析试卷(解析版).docx
  • 北师大版七年级数学上册第六章数据的收集与整理重点解析试卷(含答案详解).docx北师大版七年级数学上册第六章数据的收集与整理重点解析试卷(含答案详解).docx
  • 北师大版七年级数学上册第六章数据的收集与整理重点解析练习题(详解).docx北师大版七年级数学上册第六章数据的收集与整理重点解析练习题(详解).docx
  • 北师大版七年级数学上册第六章数据的收集与整理综合练习试题(解析版).docx北师大版七年级数学上册第六章数据的收集与整理综合练习试题(解析版).docx
  • 北师大版七年级数学上册第六章数据的收集与整理综合练习试卷(含答案详解).docx北师大版七年级数学上册第六章数据的收集与整理综合练习试卷(含答案详解).docx
  • 北师大版七年级数学上册第六章数据的收集与整理综合练习练习题(含答案详解).docx北师大版七年级数学上册第六章数据的收集与整理综合练习练习题(含答案详解).docx
  • 北师大版七年级数学上册第六章数据的收集与整理综合练习练习题(含答案解析).docx北师大版七年级数学上册第六章数据的收集与整理综合练习练习题(含答案解析).docx
  • 北师大版七年级数学上册第六章数据的收集与整理综合测试试题.docx北师大版七年级数学上册第六章数据的收集与整理综合测试试题.docx
  • 北师大版七年级数学上册第六章数据的收集与整理综合测试试卷(详解版).docx北师大版七年级数学上册第六章数据的收集与整理综合测试试卷(详解版).docx
  • 北师大版七年级数学上册第六章数据的收集与整理综合测试练习题(含答案详解).docx北师大版七年级数学上册第六章数据的收集与整理综合测试练习题(含答案详解).docx
  • 北师大版七年级数学上册第六章数据的收集与整理综合测评试题(含答案解析版).docx北师大版七年级数学上册第六章数据的收集与整理综合测评试题(含答案解析版).docx
  • 北师大版七年级数学上册第六章数据的收集与整理综合测评试题(含答案及解析).docx北师大版七年级数学上册第六章数据的收集与整理综合测评试题(含答案及解析).docx
  • 北师大版七年级数学上册第六章数据的收集与整理综合测评试卷(含答案详解版).docx北师大版七年级数学上册第六章数据的收集与整理综合测评试卷(含答案详解版).docx
  • 北师大版七年级数学上册第六章数据的收集与整理章节练习试题(含答案解析).docx北师大版七年级数学上册第六章数据的收集与整理章节练习试题(含答案解析).docx
  • 北师大版七年级数学上册第六章数据的收集与整理章节测试试卷(附答案详解).docx北师大版七年级数学上册第六章数据的收集与整理章节测试试卷(附答案详解).docx
  • 北师大版七年级数学上册第六章数据的收集与整理章节测试试卷(含答案详解).docx北师大版七年级数学上册第六章数据的收集与整理章节测试试卷(含答案详解).docx
  • 北师大版七年级数学上册第六章数据的收集与整理章节测评试题(含解析).docx北师大版七年级数学上册第六章数据的收集与整理章节测评试题(含解析).docx
  • 北师大版七年级数学上册第六章数据的收集与整理章节测评练习题(含答案解析).docx北师大版七年级数学上册第六章数据的收集与整理章节测评练习题(含答案解析).docx
  • 北师大版七年级数学上册第六章数据的收集与整理必考点解析试卷(含答案详解).docx北师大版七年级数学上册第六章数据的收集与整理必考点解析试卷(含答案详解).docx
  • 北师大版七年级数学上册第六章数据的收集与整理必考点解析练习题(含答案详解).docx北师大版七年级数学上册第六章数据的收集与整理必考点解析练习题(含答案详解).docx
  • 北师大版七年级数学上册第六章数据的收集与整理定向测试试题(含详细解析).docx北师大版七年级数学上册第六章数据的收集与整理定向测试试题(含详细解析).docx
  • 北师大版七年级数学上册第六章数据的收集与整理定向测试试题(含答案解析).docx北师大版七年级数学上册第六章数据的收集与整理定向测试试题(含答案解析).docx
  • 北师大版七年级数学上册第六章数据的收集与整理定向测试试卷(详解版).docx北师大版七年级数学上册第六章数据的收集与整理定向测试试卷(详解版).docx
  • 北师大版七年级数学上册第六章数据的收集与整理定向攻克试卷(解析版含答案).docx北师大版七年级数学上册第六章数据的收集与整理定向攻克试卷(解析版含答案).docx
  • 北师大版七年级数学上册第六章数据的收集与整理定向攻克试卷(含答案详解版).docx北师大版七年级数学上册第六章数据的收集与整理定向攻克试卷(含答案详解版).docx
  • 北师大版七年级数学上册第六章数据的收集与整理定向攻克练习题(含答案解析).docx北师大版七年级数学上册第六章数据的收集与整理定向攻克练习题(含答案解析).docx
  • 北师大版七年级数学上册第六章数据的收集与整理同步训练试题(解析版).docx北师大版七年级数学上册第六章数据的收集与整理同步训练试题(解析版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1