分享
分享赚钱 收藏 举报 版权申诉 / 26

类型人教版九年级数学上册第二十五章概率初步定向练习试题(详解).docx

  • 上传人:a****
  • 文档编号:869513
  • 上传时间:2025-12-17
  • 格式:DOCX
  • 页数:26
  • 大小:636.70KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    人教版 九年级 数学 上册 第二 十五 概率 初步 定向 练习 试题 详解
    资源描述:

    1、人教版九年级数学上册第二十五章概率初步定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查各组随机抽取辖区内某三个小区中的一个进行

    2、检查,则两个组恰好抽到同一个小区的概率是()ABCD2、下列说法正确的是()A367人中至少有2人生日相同B任意掷一枚均匀的骰子,掷出的点数是偶数的概率是C天气预报说明天的降水概率为90%,则明天一定会下雨D某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖3、下列事件中,是必然事件的是()A抛掷一个骰子,出现8点朝上B三角形的内角和是C汽车经过一个有红绿灯的路口时,前方恰好是绿灯D明天考试,小明会考满分4、将一枚质地均匀的骰子连续投掷两次,记投掷两次的正面数字之和为,则下面关于事件发生的概率说法错误的是()ABCD5、在一个不透明的口袋中,装有若干个红球和3个黄球,它们除颜色外没有任何

    3、区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是,则估计盒子中红球的个数大约是A20个B16个C15个D12个6、在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球两次都摸到黄球的概率是()A B CD 7、某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()ABCD8、某一超市在“五一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为小张这期间在该超市买商品获得了三次抽奖机会,则小张()A能

    4、中奖一次B能中奖两次C至少能中奖一次D中奖次数不能确定9、投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A两枚骰子向上一面的点数之和大于1B两枚骰子向上一面的点数之和等于1C两枚骰子向上一面的点数之和大于12D两枚骰子向上一面的点数之和等于1210、如图在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以图成一个矩形,从这些矩形中任选一个,则所选矩形含点A的概率是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、儿童节期间,游乐场里有一种游戏的规则是:在一个装有6个红球和若干白球(每个球除颜色外,其它都相同)

    5、的袋中,随机摸一个球,摸到一个红球就得欢动世界通票一张,已知参加这种游戏的有300人,游乐场为此游戏发放欢动世界通票60张,请你通过计算估计袋中白球的数量是_个2、小林掷一枚质地均匀的正方体骰子(骰子的每个面上分别标有1、2、3、4、5、6,他把第一次掷得的点数记为x,第二次掷得的点数记为y,则分别以这两次掷得的点数值为横、纵坐标的点恰好在直线上的概率是_3、今年某市中考增加了体育测试科目,考生考试顺序和考试项目(考生从考试的各个项目中抽取一项作为考试项目)由抽签的方式决定,具体操作流程:每位考生从写有A,B,C的三个小球中随机抽取一个小球确定考试组别;再从写有“引体向上”“立定跳远”“800

    6、米”的抽签纸中抽取一个考试项目进行测试,则考生小明抽到A组“引体向上”的概率是_4、一个不透明的口袋中有三个完全相同的小球,小球上分别写有数字4、5、6,随机摸取1个小球然后放回,再随机摸取一个小球(1)用画树状图或列表的方法表示出可能出现的所有结果;(1)求两次抽出数字之和为奇数的概率5、从2018年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6个科目中,自主选择3个科目参加等级考试.学生已选物理,还想从思想政治、历史、地理3个文科科目中选1科,再从化学、生物2个理科科目中

    7、选1科.若他选思想政治、历史、地理的可能性相等,选化学、生物的可能性相等,则选修地理和生物的概率为_.三、解答题(5小题,每小题10分,共计50分)1、生活在数字时代的我们,很多场合用二维码(如图)来表示不同的信息,类似地,可通过在矩形网格中,对每一个小方格涂加色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格,如图,通过涂器色或不涂色可表示两个不同的信息(1)用树状图或列表格的方法,求图可表示不同信息的总个数:(图中标号表示两个不同位置的小方格,下同)(2)图为的网格图它可表示不同信息的总个数为 ;(3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用的网格图来

    8、表示各人身份信息,若该校师生共人,则的最小值为 ;2、北京冬奥会、冬残奥会的成功举办推动了我国冰雪运动的跨越式发展,激发了青少年对冰雪项目的浓厚兴趣某校通过抽样调查的方法,对四个项目最感兴趣的人数进行了统计,含花样滑冰、短道速滑、自由式滑雪、单板滑雪四项(每人限选1项),制作了如下统计图(部分信息未给出)请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了_名学生;若该校共有2000名学生,估计爱好花样滑冰运动的学生有_人;(2)补全条形统计图;(3)把短道速滑记为A、花样滑冰记为B、自由式滑雪记为C、单板滑雪记为D,学校将从这四个运动项目中抽出两项来做重点推介,请用画树状图或列

    9、表的方法求出抽到项目中恰有一项为自由式滑雪C的概率3、2022年2月4日,北京冬奥会正式拉开帷幕,小明同学非常喜欢冰球、短道速滑、自由式滑雪、冰壶、花样滑冰这五个项目,他也想知道大家对这五个项目的喜爱程度,于是他对所在小区的居民做了一次随机调查统计,让每个人在这五个项目中选一项最喜欢的,并根据这个统计结果制作了如下两幅不完整的统计图:(其中A冰球、B短道速滑、C自由式滑雪、D冰壶、E花样滑冰)(1)该小区居民在这次随机调查中被调查到的人数是_人,_,并补全条形统计图;(2)若该小区有居民1200人,试估计喜欢短道速滑这个项目的居民约有多少人?(3)由于小明同学能够观看比赛的时间有限,所以他只能

    10、从这五个项目中随机选两个项目观看,请问他同时选到B,C这两个项目的概率是多少?(要求画树状图或列表求概率)4、2022北京冬残奥会是历史上第13届冬残奥会,于2022年3月4日至3月13日举行比赛共设6个大项,即残奥高山滑雪、残奥冬季两项、残奥越野滑雪、残奥单板滑雪、残奥冰球、轮椅冰壶小明为了解同学们是否知晓这6大项目,随机对学校的部分同学进行了一次问卷调查,问卷调查的结果分为“非常了解”“比较了解”“基本了解”“不太了解”四个类别,根据调查结果,绘制出如图所示的条形统计图和扇形统计图请根据图表中的信息回答下列问题:(1)求本次调查的样本容量(2)求图中a的值(3)求图“基本了解”类别所对应的

    11、圆心角大小(4)若某同学对项目了解类别为“非常了解”或者“比较了解”的话,则可称为“奥知达人”,现从该校随机抽查1名学生,求该学生是“奥知达人”的概率5、2021年,为了能源资源配置更加合理,我国多地发布限电令某校为了解学生对限电原因的了解程度,在九年级学生中作了一次抽样调查,并将结果分成四个等级:A非常了解;B比较了解;C基本了解;D不了解根据调查结果绘制成了如下不完整的统计图:请根据图中信息回答下列问题:(1)本次被调查的学生有_人;请补全条形统计图;(2)若该校九年级共有1200名学生,请你估计该校九年级学生中“比较了解”限电原因的学生有多少人?(3)九年(1)班被查的学生中A等级的有5

    12、人,其中2名男生,3名女生,现打算从这5名学生中随意抽取2人进行电话采访,请用列表或画树状图的方法求恰好抽到一男一女的概率-参考答案-一、单选题1、C【解析】【详解】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可详解:将三个小区分别记为A、B、C,列表如下:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为.故选C点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于

    13、两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比2、A【解析】【详解】分析:利用概率的意义和必然事件的概念的概念进行分析详解:A、367人中至少有2人生日相同,正确;B、任意掷一枚均匀的骰子,掷出的点数是偶数的概率是,错误;C、天气预报说明天的降水概率为90%,则明天不一定会下雨,错误;D、某种彩票中奖的概率是1%,则买100张彩票不一定有1张中奖,错误;故选A点睛:此题主要考查了概率的意义,解决的关键是理解概率的意义以及必然事件的概念3、B【解析】【分析】根据随机事件的相关概念可进行排除选项【详解】解

    14、:A、抛掷一个骰子,出现8点朝上,属于不可能事件,故不符合题意;B、三角形内角和是180,是必然事件,故符合题意;C、汽车经过一个有红绿灯的路口时,前方恰好是绿灯,属于随机事件,故不符合题意;D、明天考试,小明会考满分,是随机事件,故不符合题意;故选B【考点】本题主要考查随机事件,熟练掌握随机事件的相关概念是解题的关键4、B【解析】【分析】用列表法或树状图法求出相应事件发生的概率,再进行判断即可【详解】投掷质地均匀的骰子两次,正面数字之和所有可能出现的结果如下:共有36种结果,其中和为5的有4种,和为9的有4种,和为6的有5种,和为8的有5种,和小于7的有15种,因此选项A不符合题意;,因此选

    15、项B符合题意;,因此选项C不符合题意;,因此选项D不符合题意;故选:B【考点】本题考查了列表法或树状图法求等可能事件发生的概率,使用此方法一定要注意每一种结果出现的可能性是均等的,即为等可能事件5、D【解析】【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率【详解】设红球有x个,根据题意得,3:(3+x)1:5,解得x12,经检验:x12是原分式方程的解,所以估计盒子中红球的个数大约有12个,故选D【考点】此题主要考查了利用频率估计概率,正确运用概率公式是解题关键6

    16、、A【解析】【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案注意此题属于放回实验【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,两次都摸到黄球的概率为,故选A【考点】此题考查的是用列表法或树状图法求概率的知识注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验7、D【解析】【分析】随机事件A的概率事件A可能出现的结果数所有可能出现的结果数【详解】解:每分钟红灯亮30秒,绿灯亮2

    17、5秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率,故选D【考点】本题考查了概率,熟练掌握概率公式是解题的关键8、D【解析】【分析】由于中奖概率为,说明此事件为随机事件,即可能发生,也可能不发生【详解】解:根据随机事件的定义判定,中奖次数不能确定故选D【考点】解答此题要明确概率和事件的关系:,为不可能事件;为必然事件;为随机事件9、D【解析】【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可【详解】A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上

    18、一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D【考点】此题主要考查了随机事件的判断,关键是掌握随机事件,确定性事件的定义10、D【解析】【分析】根据题意两条横线和两条竖线都可以组成矩形个数,再得出含点A矩形个数,进而利用概率公式求出即可【详解】解:两条横线和两条竖线都可以组成一个矩形,则如图的三条横线和三条竖线组成可以9个矩形,其中含点A矩形4个,所选矩形含点A的概率是故选:D【考点】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能

    19、力,是基础题二、填空题1、24【解析】【详解】解:设袋中共有m个红球,则摸到红球的概率P(红球)=解得m24故答案为242、【解析】【分析】首先根据题意列出表格,然后由表格求得所有等可能的结果与点B(x,y)恰好在直线上的情况,再利用概率公式求得答案【详解】解:列表如下:第一次第二次1234561(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6

    20、,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)共有36种等可能的结果,点B(x,y)恰好在直线上的有:(1,6),(2,4),(3,2),点B(x,y)恰好在直线上的概率是:故答案为:【考点】本题考查的是用列表法或树状图法求概率注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率所求情况数与总情况数之比3、 【解析】【详解】试题解析:分别用D,E,F表示“引体向上”立定跳远”“800米”,画树状图得:共有9种等可能的结果,小明抽到A组“引体向上”的概率=.故答案为:点睛:列表法或画树状图法可以

    21、不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比4、【解析】【分析】(1)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;使用树状图分析时,一定要做到不重不漏(2)根据概率的求法,找准两点:第一点,全部情况的总数;第二点,符合条件的情况数目;二者的比值就是其发生的概率【详解】(1)根据题意,画树状图如下:数字之和为8,9,10,9,10,11,10,11,12由树状图可知,共有9种可能的结果(2) 共有9种可能的结果,其中两次抽出数字之和为奇数(记为事件A)的情况有4种,P(A)=故答案

    22、为:【考点】此题考查用列表法或树状图法求概率,概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果那么事件A的概率P (A) =5、【解析】【详解】【分析】列表格得出所有等可能的情况,然后再找出符合题意的情况,根据概率公式进行计算即可得.【详解】列表格:政治历史地理化学化学,政治化学,历史化学,地理生物生物,政治生物,历史生物,地理从表格中可以看出一共有6种等可能的情况,选择地理和生物的有1种情况,所以选择地理和生物的概率是,故答案为.【考点】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比三、解答题1、(1)见解析;(2)16;

    23、(3)3【解析】【分析】(1)根据题意画出树状图即可求解;(2)根据题意画出树状图即可求解;(3)根据(1)(2)得到规律即可求出n的值【详解】解:画树状图如图所示:图的网格可以表示不同信息的总数个数有个(2)画树状图如图所示:图22的网格图可以表示不同信息的总数个数有16=24个,故答案为:16(3)依题意可得33网格图表示不同信息的总数个数有29=512,故则的最小值为3,故答案为:3【考点】此题主要考查画树状图与找规律,解题的关键是根据题意画出树状图2、 (1)100,800(2)补全条形统计图见解析(3)树状图见解析,抽到项目中恰有一项为自由式滑雪C的概率为【解析】【分析】(1)先利用

    24、花样滑冰的人数除以其所对应的百分比,可得调查的总人数;再利用2000乘以花样滑冰的人数所占的百分比,即可求解;(2)分别求出单板滑雪的人数,自由式滑雪的人数,即可求解;(3)根据题意,画出树状图可得从四项中任取两项运动的所有机会均等的结果共有12种,抽到项目中恰有一个项目为自由式滑雪C的有6种等可能结果再根据概率公式计算,即可求解(1)解:调查的总人数为人;人;故答案为:100,800(2)解:单板滑雪的人数为人,自由式滑雪的人数为人,补全条形统计图如下:(3)解:根据题意,画出树状图如下:从四项中任取两项运动的所有机会均等的结果共有12种,抽到项目中恰有一个项目为自由式滑雪C的有6种等可能结

    25、果抽到项目中恰有一项为自由式滑雪C的概率为【考点】本题主要考查了扇形统计图和条形统计图,用样本估计总体,利用树状图和列表法求概率,明确题意,准确从统计图中获取信息是解题的关键3、 (1)20,35;(2)估计喜欢短道速滑这个项目的居民约有420人(3)【解析】【分析】(1)用D项目的人数除以其百分比即可得到总人数,从而可以求出m的值,再求出C项目的人数补全统计图即可;(2)用1200乘以样本中喜欢短道速滑的人数的百分比即可得到答案;(3)利用列表法或者树状图法求解即可(1)解:由题意得,这次随机调查中被调查到的人数是人,即,C项目的人数为200-70-20-20-50=40人,补全统计图如下所

    26、示:故答案为:20,35;(2)解:人,估计喜欢短道速滑这个项目的居民约有420人;(3)解:列表如下:项目ABCDEA(B、A)(C、A)(D、A)(E、A)B(A,B)(C、B)(D、B)(E、B)C(A、C)(B、C)(D、C)(E、C)D(A、D)(B、D)(C、D)(E、D)E(A、E)(B、E)(C、E)(D、E)由表格可知一共有20种等可能性的结果数,其中同时选中B、C两个项目的结果数有2种,同时选中B、C两个项目概率为【考点】本题主要考查了扇形统计图和条形统计图信息相关联,用样本估计总体,树状图或列表法求解概率,正确读懂统计图是解题的关键4、 (1)400(2)120(3)72

    27、(4)0.35【解析】【分析】(1)根据类别为“非常了解”的同学有20人,所占百分比为5%,用20除以5%即可求解,(2)根据类别为“比较了解”的频数为即可求得的值,(3)根据扇形统计图求得类别为“基本了解”所占百分比为乘以360度即可求解,(4)根据类别为“非常了解”与“比较了解”所占百分比之和为35%,利用频率估算概率即可(1)解:类别为“非常了解”的同学有20人,所占百分比为5%,本次调查的样本容量为:(2)类别为“比较了解”的同学占30%,类别为“比较了解”的频数为(3)结合扇形统计图,类别为“基本了解”所占百分比为, 故对应圆心角的大小为(4)类别为“非常了解”与“比较了解”所占百分

    28、比之和为35%, 根据样本估计总体的原则,从该校随机抽查1名学生,该学生是“奥知达人”的概率为0.35【考点】本题考查了条形统计图与扇形统计图信息关联,根据样本估计总体,频率估算概率,掌握以上知识是解题的关键5、 (1)200,图见详解(2)该校九年级学生中“比较了解”限电原因的学生有360人(3)【解析】【分析】(1)根据统计图可知B等级的学生有60人,占抽取人数的30,进而问题可求解;(2)由统计图及题意可直接进行求解;(3)通过列表法进行求解概率即可(1)解:由统计图可知B等级的学生有60人,占抽取人数的30,本次被调查的学生有6030=200(人),C等级的学生有:200-40-60-

    29、20=80(人),补全统计图如下:(2)解:由题意得:120030=360(人),答:该校九年级学生中“比较了解”限电原因的学生有360人;(3)解:由题意可得列表如下:男1男2女1女2女3男1/(男1,男2)(男1,女1)(男1,女2)(男1,女3)男2(男1,男2)/(男2,女1)(男2,女2)(男2,女3)女1(男1,女1)(男2,女1)/(女1,女2)(女1,女3)女2(男1,女2)(男2,女2)(女2,女1)/(女2,女3)女3(男1,女3)(男2,女3)(女3,女1)(女3,女2)/由上表可知5人中随机抽取2人的可能性有20种,恰好为一男一女的有12种,恰好抽到一男一女的概率为【考点】本题主要考查概率及扇形统计图、条形统计图、样本估计总体,解题的关键是根据题意得到相应的数据进行分析即可

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教版九年级数学上册第二十五章概率初步定向练习试题(详解).docx
    链接地址:https://www.ketangku.com/wenku/file-869513.html
    相关资源 更多
  • 任命后个人表态发言4篇 任命后个人表态发言三篇 任命后个人表态发言稿 任命后个人表态发言.docx任命后个人表态发言4篇 任命后个人表态发言三篇 任命后个人表态发言稿 任命后个人表态发言.docx
  • 任命后个人表态发言.docx任命后个人表态发言.docx
  • 任务阅读(阅读还原)期末复习专项练习10篇-2022-2023学年人教版英语九年级上册.docx任务阅读(阅读还原)期末复习专项练习10篇-2022-2023学年人教版英语九年级上册.docx
  • 任务阅读(阅读还原)期中复习专项练习10篇-2022-2023学年人教版英语七年级上册.docx任务阅读(阅读还原)期中复习专项练习10篇-2022-2023学年人教版英语七年级上册.docx
  • 任务阅读(阅读填空)期末复习专项练习10篇-2021-2022学年牛津译林英语七年级下册.docx任务阅读(阅读填空)期末复习专项练习10篇-2021-2022学年牛津译林英语七年级下册.docx
  • 任务突破练7 赏析环境——明辨类型,关注效果.docx任务突破练7 赏析环境——明辨类型,关注效果.docx
  • 任务突破练2 论证分析——关注论据判定,辨清论证思路.docx任务突破练2 论证分析——关注论据判定,辨清论证思路.docx
  • 任务突破练21 语用中的常备考点.docx任务突破练21 语用中的常备考点.docx
  • 任务突破练20 情境化的语言表达题.docx任务突破练20 情境化的语言表达题.docx
  • 任务突破练12 文言文选择题.docx任务突破练12 文言文选择题.docx
  • 任务三 尝试创作.docx任务三 尝试创作.docx
  • 任前集体廉政谈话会讲话提纲10篇.docx任前集体廉政谈话会讲话提纲10篇.docx
  • 任前廉政谈话表态发言最新.docx任前廉政谈话表态发言最新.docx
  • 价值量和社会劳动生产率题型专项讲练(以近三年高考真题为例).docx价值量和社会劳动生产率题型专项讲练(以近三年高考真题为例).docx
  • 仰望星空与脚踏实地.docx仰望星空与脚踏实地.docx
  • 仰望大树.docx仰望大树.docx
  • 仪表联锁系统管理制度.docx仪表联锁系统管理制度.docx
  • 仪表联锁系统管理.docx仪表联锁系统管理.docx
  • 仪表维护管理制度.docx仪表维护管理制度.docx
  • 仪表电工岗位操作规程.docx仪表电工岗位操作规程.docx
  • 仪表公司消防应急预案.docx仪表公司消防应急预案.docx
  • 仪控部岗位责任制.docx仪控部岗位责任制.docx
  • 仪器——2022年浙江省杭州市中考科学.docx仪器——2022年浙江省杭州市中考科学.docx
  • 以项目实践谈建筑施工项目的安全生产管理.docx以项目实践谈建筑施工项目的安全生产管理.docx
  • 以车抵押借款合同 .docx以车抵押借款合同 .docx
  • 以质量安全为核心 强化现场标准化管理.docx以质量安全为核心 强化现场标准化管理.docx
  • 以积极向上的态度涵养高尚师德.docx以积极向上的态度涵养高尚师德.docx
  • 以科学发展观指导铁路安全管理创新.docx以科学发展观指导铁路安全管理创新.docx
  • 以社会组织参与基层社会治理为主题的代表约见活动领导讲话.docx以社会组织参与基层社会治理为主题的代表约见活动领导讲话.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1