分享
分享赚钱 收藏 举报 版权申诉 / 34

类型人教版九年级数学上册第二十四章圆专项攻克试卷.docx

  • 上传人:a****
  • 文档编号:869546
  • 上传时间:2025-12-17
  • 格式:DOCX
  • 页数:34
  • 大小:625.59KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    人教版 九年级 数学 上册 第二 十四 专项 攻克 试卷
    资源描述:

    1、人教版九年级数学上册第二十四章圆专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知:如图,AB是O的直径,点P在BA的延长线上,弦CD交AB于E,连接OD、PC、BC,AOD2ABC,PD,过E

    2、作弦GFBC交圆与G、F两点,连接CF、BG则下列结论:CDAB;PC是O的切线;ODGF;弦CF的弦心距等于BG则其中正确的是()ABCD2、如图,在等腰RtABC中,ACBC,点P在以斜边AB为直径的半圆上,M为PC的中点当点P沿半圆从点A运动至点B时,点M运动的路径长是()ABCD23、如图所示,矩形纸片中,把它分割成正方形纸片和矩形纸片后,分别裁出扇形和半径最大的圆,恰好能作为一个圆锥的底面和侧面,则圆锥的表面积为()ABCD4、如图,O中,弦ABCD,垂足为E,F为的中点,连接AF、BF、AC,AF交CD于M,过F作FHAC,垂足为G,以下结论:;HCBF:MFFC:,其中成立的个数

    3、是()A1个B2个C3个D4个5、下列图形为正多边形的是()ABCD6、如图所示,矩形纸片中,把它分割成正方形纸片和矩形纸片后,分别裁出扇形和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则的长为()ABCD7、一个点到圆的最大距离为11 cm,最小距离为5 cm,则圆的半径为()A16cm或6 cmB3cm或8 cmC3 cmD8 cm8、已知O的半径等于3,圆心O到点P的距离为5,那么点P与O的位置关系是()A点P在O内B点P在O外C点P在O上D无法确定9、下列4个说法中:直径是弦;弦是直径;任何一条直径所在的直线都是圆的对称轴;弧是半圆; 正确的有()A1个B2个C3个D4个10、如图,

    4、五边形是O的内接正五边形,则的度数为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示的扇形中,C为上一点,连接,过C作的垂线交于点D,则图中阴影部分的面积为_2、如图,AB是O的直径,弦CDAB于点E若AB10,AE1,则弦CD的长是_3、如图,四边形ABCD为O的内接正四边形,AEF为O的内接正三角形,连接DF若DF恰好是同圆的一个内接正多边形的一边,则这个正多边形的边数为 _4、如图,在四边形中,若,则的内切圆面积_(结果保留)5、如图,以为直径作半圆,圆心为点;以点为圆心,为半径作,过点作的平行线交两弧于点、,则阴影部分的面积是_.三、解答题(

    5、5小题,每小题10分,共计50分)1、(1)如图,在ABC中,AB=4,AC=3,若AD平分BAC交于点,那么点到的距离为 (2)如图,四边形内接于,为直径,点B是半圆的三等分点(弧弧),连接,若平分,且,求四边形的面积(3)如图,为把“十四运”办成一届精彩圆满的体育盛会很多公园都在进行花卉装扮,其中一块圆形场地圆O,设计人员准备在内接四边形ABCD区域内进行花卉图案设计,其余部分方便游客参观,按照设计要求,四边形ABCD满足ABC=60,AB=AD,且AD+DC=10(其中 ),为让游客有更好的观体验,四边形ABCD花卉的区域面积越大越好,那么是否存在面积最大的四边形ABCD?若存在,求出这

    6、个最大值,不存在请说明理由2、如图,直线l:y2x1与抛物线C:y2x2bxc相交于点A(0,m),B(n,7)(1)填空:m ,n ,抛物线的解析式为 (2)将直线l向下移a(a0)个单位长度后,直线l与抛物线C仍有公共点,求a的取值范围(3)Q是抛物线上的一个动点,是否存在以AQ为直径的圆与x轴相切于点P?若存在,请求出点P的坐标;若不存在,请说明理由3、如图1,正五边形内接于,阅读以下作图过程,并回答下列问题,作法:如图2,作直径;以F为圆心,为半径作圆弧,与交于点M,N;连接(1)求的度数(2)是正三角形吗?请说明理由(3)从点A开始,以长为半径,在上依次截取点,再依次连接这些分点,得

    7、到正n边形,求n的值4、如图,的两条弦(AB不是直径),点E为AB中点,连接EC,ED(1)直线EO与AB垂直吗?请说明理由;(2)求证:5、等边三角形的边长为1厘米,面积为0.43平方厘米以点为圆心,长为半径在三角形外画弧,交的延长线于点,形成扇形;以点为圆心,长为半径画弧,交的延长线于点,形成扇形;以点为圆心,长为半径画弧,交的延长线于点,形成扇形(1)求所得的图形的周长;(结果保留)(2)照此规律画至第十个扇形,求所围成的图形的面积以及所画出的所有弧长的和(结果保留)-参考答案-一、单选题1、A【解析】【分析】连接BD、OC、AG、AC,过O作OQCF于Q,OZBG于Z,求出ABC=AB

    8、D,从而有弧AC=弧AD,由垂径定理的推论即可判断的正误;由CDPB可得到P+PCD=90,结合P=DCO、等边对等角的知识等量代换可得到PCO=90,据此可判断的正误;假设ODGF成立,则可得到ABC=30,判断由已知条件能否得到ABC的度数即可判断的正误;求出CF=AG,根据垂径定理和三角形中位线的知识可得到CQ=OZ,通过证明OCQBOZ可得到OQ=BZ,结合垂径定理即可判断.【详解】连接BD、OC、AG,过O作OQCF于Q,OZBG于Z,OD=OB,ABD=ODB,AOD=OBD+ODB=2OBD,AOD=2ABC,ABC=ABD,弧AC=弧AD,AB是直径,CDAB,正确;CDAB,

    9、P+PCD=90,OD=OC,OCD=ODC=P,PCD+OCD=90,PCO=90,PC是切线,正确;假设ODGF,则AOD=FEB=2ABC,3ABC=90,ABC=30,已知没有给出B=30,错误;AB是直径,ACB=90,EFBC,ACEF,弧CF=弧AG,AG=CF,OQCF,OZBG,CQ=AG,OZ=AG,BZ=BG,OZ=CQ,OC=OB,OQC=OZB=90,OCQBOZ,OQ=BZ=BG,正确故选A【考点】本题是圆的综合题,考查了垂径定理及其推论,切线的判定,等腰三角形的性质,平行线的性质,全等三角形的判定与性质.解答本题的关键是熟练掌握圆的有关知识点.2、B【解析】【分析

    10、】取AB的中点O、AC的中点E、BC的中点F,连接OC、OP、OM、OE、OF、EF,如图,利用勾股定理得到AB的长,进而可求出OC,OP的长,求得CMO=90,于是得到点M在以OC为直径的圆上,然后根据圆的周长公式计算点M运动的路径长【详解】解:取AB的中点O、AC的中点E、BC的中点F,连接OC、OP、OM、OE、OF、EF,如图,在等腰RtABC中,AC=BC=2,AB=BC=4,OC=OP=AB=2,ACB=90,C在O上,M为PC的中点,OMPC,CMO=90,点M在以OC为直径的圆上,P点在A点时,M点在E点;P点在B点时,M点在F点O是AB中点,E是AC中点,OE是ABC的中位线

    11、,OE/BC,OE=BC=,OEAC,同理OFBC,OF=,四边形CEOF是矩形,OE=OF,四边形CEOF为正方形,EF=OC=2,M点的路径为以EF为直径的半圆,点M运动的路径长=2=故选:B【考点】本题考查了等腰三角形的性质,勾股定理,正方形的判定与性质,圆周角定理,以及动点的轨迹:点按一定规律运动所形成的图形为点运动的轨迹解决此题的关键是利用圆周角定理确定M点的轨迹为以EF为直径的半圆3、B【解析】【分析】设圆锥的底面的半径为rcm,则DE2rcm,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2r,解方程求出r,然后求得直径即可【详解】解:设圆锥的底面的半径为rc

    12、m,则AE=BF=6-2r根据题意得2 r,解得r1,侧面积= ,底面积=所以圆锥的表面积=,故选:B【考点】本题综合考查有关扇形和圆锥的相关计算解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长正确对这两个关系的记忆是解题的关键4、C【解析】【分析】根据弧,弦,圆心角之间的关系,圆周角定理以及三角形内角和定理一一判断即可【详解】解:F为的中点,故正确,FCMFAC,FCGACM+FCM,AMEFMCACM+FAC,AMEFMCFCGFCM,FCFM,故错误,ABCD,FHAC,AEMCGF90,C

    13、FH+FCG90,BAF+AME90,CFHBAF,HCBF,故正确,AGF90,CAF+AFH90,180,180,故正确,故选:C【点评】本题考查圆心角,弧,弦之间的关系,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考选择题中的压轴题5、D【解析】【分析】根据正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形可得答案【详解】根据正多边形的定义,得到D中图形是正五边形故选D【考点】本题考查了正多边形,关键是掌握正多边形的定义6、B【解析】【分析】设AB=xcm,则DE=(6-x)cm,根据扇形的弧长等于圆锥底面圆的周长列出方程,求解即可【详解】设,则DE=(6-x

    14、)cm,由题意,得,解得. 故选B【考点】本题考查了圆锥的计算,矩形的性质,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长7、B【解析】【分析】最大距离与最小距离的和是直径;当点P在圆外时,点到圆的最大距离与最小距离的差是直径,由此得解【详解】当点P在圆内时,最近点的距离为5cm,最远点的距离为11cm,则直径是16cm,因而半径是8cm;当点P在圆外时,最近点的距离为5cm,最远点的距离为11cm,则直径是6cm,因而半径是3cm;故选B【考点】本题考查了点与圆的位置关系,利用线段的和差得出直径是解题关键,分类讨论,

    15、以防遗漏8、B【解析】【分析】根据d,r法则逐一判断即可【详解】解:r=3,d=5,dr,点P在O外故选:B【考点】本题考查了点与圆的位置关系,熟练掌握,法则是解题的关键9、B【解析】【分析】根据弧的分类、圆的性质逐一判断即可【详解】解:直径是最长的弦,故正确;最长的弦才是直径,故错误;过圆心的任一直线都是圆的对称轴,故正确;半圆是弧,但弧不一定是半圆,故错误,正确的有两个,故选B【考点】本题考查了对圆的认识,熟知弦的定义、弧的分类是本题的关键10、D【解析】【分析】先根据正五边形的内角和求出每个内角,再根据等边对等角得出ABE=AEB,然后利用三角形内角和求出ABE=即可【详解】解:五边形是

    16、O的内接正五边形,A=ABC=,AB=AE,ABE=AEB,ABE=,故选:D【考点】本题考查圆内接正五边形的性质,等腰三角形性质,三角形内角和公式,角的和差计算,掌握圆内接正五边形的性质,等腰三角形性质,三角形内角和公式,角的和差计算是解题关键二、填空题1、【解析】【分析】先根据题目条件计算出OD,CD的长度,判断为等边三角形,之后表示出阴影面积的计算公式进行计算即可【详解】在中,为等边三角形故答案为:【考点】本题考查了阴影面积的计算,熟知不规则阴影面积的计算方法是解题的关键2、6【解析】【分析】连接OC,根据勾股定理求出CE,根据垂径定理计算即可【详解】连接OC,AB是O的直径,弦CDAB

    17、,CD2CE,OEC90,AB10,AE1,OC5,OE514,在RtCOE中,CE3,CD2CE6,故答案为6【考点】本题考查了垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键3、12【解析】【分析】连接OA、OD、OF,如图,利用正多边形与圆,分别计算O的内接正四边形与内接正三角形的中心角得到AOD=90,AOF=120,则DOF=30,然后计算即可得到n的值【详解】解:连接OA、OD、OF,如图,设这个正多边形为n边形,AD,AF分别为O的内接正四边形与内接正三角形的一边,AOD=90,AOF=120,DOF=AOF-AOD=30,n=12,即DF恰好

    18、是同圆内接一个正十二边形的一边故答案为:12【考点】本题考查了正多边形与圆:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆;熟练掌握正多边形的有关概念4、【解析】【分析】根据,得出为的垂直平分线;利用等腰三角形的三线合一可得,进而得出为等边三角形;利用,得出为直角三角形,解直角三角形,求得等边三角形的边长,再利用内心的性质求出圆的半径,圆的面积可求【详解】解:如图,设与交于点F,的内心为O,连接,是线段的垂直平分线,为等边三角形,O为的内心,的内切圆面积为故答案为【考点】本题考查了垂直平分线的判定、三角形内切圆、等边三

    19、角形判定与性质、解直角三角形,解题关键是根据垂直平分线的判定确定为等边三角形,根据解直角三角形求出内切圆半径5、【解析】【分析】连接CE,如图,利用平行线的性质得COEEOB90,再利用勾股定理计算出OE,利用余弦的定义得到OCE60,然后根据扇形面积公式,利用S阴影部分S扇形BCESOCES扇形BOD进行计算即可【详解】解:连接CE,如图,ACBC,ACB90,ACOE,COEEOB90,OC1,CE2,OE,cosOCE,OCE60,S阴影部分S扇形BCESOCES扇形BOD,故答案为【考点】本题考查了扇形面积的计算:求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积三、解答题1、

    20、(1);(2) 四边形ABCD的面积为32;(3)存在【解析】【分析】(1)如图,作辅助线,证明AE=DE;证明BDEBCA ,得到,列出比例式即可解决问题(2)(2)连接OB,根据题意得AOB=60,作AEBD,利用解直角三角形可求AB的长,通过解直角三角形分别求出BC,AD,CD的长,再根据面积公式求解即可;过点A作ANBC于点N,AMDC,交DC的延长线于点M,连接AC,可得,根据面积法求出关于面积的二次函数关系式,根据二次函数的性质求出最值即可【详解】解:如图,过点D作DEAB于点E则DE/AC;AD平分BAC,BAC=90,DAE=45,ADE=9045=45,AE=DE(设为),则

    21、BE=4;DE/AC, BDEBCA,即:解得:= ,点D到AC的距离(2)连接OB, 点B是半圆AC的三等分点(弧AB弧BC), AC是的直径, BD平分ABC过点A作AEBD于点E,则AE=BE设AE=BE=x,则BD=BE+DE=x=BC=BD平分ABC AD=CD AEDE , = = =32;(3)过点A作ANBC于点N,AMDC,交DC的延长线于点M,连接AC, AB=ADACB=ACDAM=ANADC+ABC=180,ADC+ADM=180,ABC=ADM又ANB=AMD=90,ABNADM AN=AM,BCA=DCA,AC=ACACNACM ABC=60ADC=120ADM=6

    22、0,MAD=30设DM=x,则AD=2x, ,即抛物线对称轴为x=5当x=4时,有最大值,为【考点】本题属于圆综合题,考查了三角形的面积,解直角三角形,角平分线的性质定理,圆周角定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题2、 (1)1,3,y2x24x1(2)0a(3)存在,P(1,0)或P(,0)【解析】【分析】(1)将A(0,m),B(n,7)代入y=2x+1,可求m、n的值,再将A(0,1),B(3,7)代入y=2x2+bx+c,可求函数解析式;(2)由题意可得y=2x+1-a,联立,得到2x2-6x+a=0,再由判别式0即可求a是取值范围;(3)设Q(t,s),则

    23、,半径,再由AQ2=t2+(s-1)2=(s+1)2,即可求t的值(1)将A(0,m),B(n,7)代入y2x1,可得m1,n3,A(0,1),B(3,7),再将A(0,1),B(3,7)代入y2x2bxc得,可得,y2x24x1,故答案为:1,3,y2x24x1;(2)由题意可得y2x1a,联立,2x26xa0,直线l与抛物线C仍有公共点368a0,a,0a;(3)存在以AQ为直径的圆与x轴相切,理由如下:设Q(t,s),M(,),P(,0),半径r,AQ2t2(s1)2(s1)2,t24s,s2t24t1,t24(2t24t1),t2或t,P(1,0)或P(,0),以AQ为直径的圆与x轴相

    24、切时,P点坐标为P(1,0)或P(,0) ,【考点】本题考查二次函数的综合应用,熟练掌握二次函数的图象及性质,平行线的性质是解题的关键3、 (1)(2)是正三角形,理由见解析(3)【解析】【分析】(1)根据正五边形的性质以及圆的性质可得,则(优弧所对圆心角),然后根据圆周角定理即可得出结论;(2)根据所作图形以及圆周角定理即可得出结论;(3)运用圆周角定理并结合(1)(2)中结论得出,即可得出结论(1)解:正五边形,(优弧所对圆心角),;(2)解:是正三角形,理由如下:连接,由作图知:,,是正三角形,同理,即,是正三角形;(3)是正三角形,【考点】本题考查了圆周角定理,正多边形的性质,读懂题意

    25、,明确题目中的作图方式,熟练运用圆周角定理是解本题的关键4、(1)直线EO与AB垂直理由见解析;(2)证明见解析【解析】【分析】(1)依据垂径定理的推论平分弦(不是直径)的直径垂直于弦可得结论;(2)易证,由垂径定理可得结论.【详解】解:(1)直线EO与AB垂直理由如下:如图,连接EO,并延长交CD于F EO过点O,E为AB的中点,(2), EF过点O,垂直平分CD, 【考点】本题考查了垂径定理,灵活利用垂径定理及其推论是解题的关键.5、(1)厘米;(2)平方厘米,厘米【解析】【分析】(1)本题按照弧长公式依次求解扇形ADC、扇形DBE、扇形ECF的弧长,最后对应相加即可(2)本题利用扇形面积

    26、公式求解第一个扇形至第三个扇形的面积,结合第一问各扇形弧长结果总结规律,得出普遍规律后将数值代入公式,累次相加即可求解【详解】(1)由已知得:扇形ADC的半径长为1,圆心角为120;扇形DBE半径长为2,圆心角为120;扇形ECF半径长为3,圆心角为120故据弧长公式可得:扇形ADC弧长;扇形DBE弧长;扇形ECF弧长;故图形CDEFC的周长为:(2)根据扇形面积公式可得:第一个扇形的面积为,由上一问可知其弧长为;第二个扇形的面积为,弧长为;第三个扇形的面积为,弧长为;总结规律可得第个扇形面积为,第个扇形弧长为故画至第十个图形所围成的图形面积和为:;所有的弧长和为:【考点】本题考查扇形与弧长公式的延伸,出题角度较为新颖,解题关键在于需要根据图形特点总结规律,其次注意计算即可

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教版九年级数学上册第二十四章圆专项攻克试卷.docx
    链接地址:https://www.ketangku.com/wenku/file-869546.html
    相关资源 更多
  • 2013届高考化学总复习(第1轮)广西专版课件:第18课时氧族元素.ppt2013届高考化学总复习(第1轮)广西专版课件:第18课时氧族元素.ppt
  • 2013届高考化学总复习(第1轮)广西专版课件:第17课时晶体的类型与性质.ppt2013届高考化学总复习(第1轮)广西专版课件:第17课时晶体的类型与性质.ppt
  • 安全供电管理.docx安全供电管理.docx
  • 2013届高考化学总复习(第1轮)广西专版课件:第14课时原子结构.ppt2013届高考化学总复习(第1轮)广西专版课件:第14课时原子结构.ppt
  • 2013届高考化学总复习(第1轮)广西专版课件:第12课时氯气.ppt2013届高考化学总复习(第1轮)广西专版课件:第12课时氯气.ppt
  • 安全例检员操作规程.docx安全例检员操作规程.docx
  • 2013届高考化学总复习(第1轮)广东专版课件:第9章 第29讲 化学电源.ppt2013届高考化学总复习(第1轮)广东专版课件:第9章 第29讲 化学电源.ppt
  • 2013届高考化学总复习(第1轮)广东专版课件:第8章 第27讲 难溶电解质的溶解平衡.ppt2013届高考化学总复习(第1轮)广东专版课件:第8章 第27讲 难溶电解质的溶解平衡.ppt
  • 2013届高考化学总复习(第1轮)广东专版课件:第8章 第25讲 水的电离和溶液的酸碱性.ppt2013届高考化学总复习(第1轮)广东专版课件:第8章 第25讲 水的电离和溶液的酸碱性.ppt
  • 2013届高考化学总复习(第1轮)广东专版课件:第7章 第23讲 化学反应进行的方向.ppt2013届高考化学总复习(第1轮)广东专版课件:第7章 第23讲 化学反应进行的方向.ppt
  • 安全使用燃气注意事项.docx安全使用燃气注意事项.docx
  • 2013届高考化学总复习(第1轮)广东专版课件:第7章 第21讲 化学平衡.ppt2013届高考化学总复习(第1轮)广东专版课件:第7章 第21讲 化学平衡.ppt
  • 2013届高考化学总复习(第1轮)广东专版课件:第7章 第20讲 化学反应速率.ppt2013届高考化学总复习(第1轮)广东专版课件:第7章 第20讲 化学反应速率.ppt
  • 安全使用燃气、煤气中毒的预防和处理.docx安全使用燃气、煤气中毒的预防和处理.docx
  • 2013届高考化学总复习(第1轮)广东专版课件:第6章 第18讲 中和反应热和能源.ppt2013届高考化学总复习(第1轮)广东专版课件:第6章 第18讲 中和反应热和能源.ppt
  • 2013届高考化学总复习(第1轮)广东专版课件:第6章 第17讲 化学反应与能量的变化.ppt2013届高考化学总复习(第1轮)广东专版课件:第6章 第17讲 化学反应与能量的变化.ppt
  • 安全使用液化气须知.docx安全使用液化气须知.docx
  • 2013届高考化学总复习(第1轮)广东专版课件:第5章 第14讲 元素周期表和原子结构.ppt2013届高考化学总复习(第1轮)广东专版课件:第5章 第14讲 元素周期表和原子结构.ppt
  • 安全使用民用气承诺书.docx安全使用民用气承诺书.docx
  • 2013届高考化学总复习(第1轮)广东专版课件:第4章 第12讲 硫和硫的化合物.ppt2013届高考化学总复习(第1轮)广东专版课件:第4章 第12讲 硫和硫的化合物.ppt
  • 2013届高考化学总复习(第1轮)广东专版课件:第2章 第05讲 氧化还原反应.ppt2013届高考化学总复习(第1轮)广东专版课件:第2章 第05讲 氧化还原反应.ppt
  • 安全使用桥式起重机.docx安全使用桥式起重机.docx
  • 2013届高考化学总复习(第1轮)广东专版课件:第2章 第04讲 离子反应.ppt2013届高考化学总复习(第1轮)广东专版课件:第2章 第04讲 离子反应.ppt
  • 2013届高考化学总复习(第1轮)广东专版课件:第2章 第03讲 物质的分类.ppt2013届高考化学总复习(第1轮)广东专版课件:第2章 第03讲 物质的分类.ppt
  • 安全使用标志的使用管理制度.docx安全使用标志的使用管理制度.docx
  • 2013届高考化学总复习(第1轮)广东专版课件:第10章 第38讲 有机推断与合成.ppt2013届高考化学总复习(第1轮)广东专版课件:第10章 第38讲 有机推断与合成.ppt
  • 2013届高考化学总复习(第1轮)广东专版课件:第10章 第37讲 有机结构与同分异构体.ppt2013届高考化学总复习(第1轮)广东专版课件:第10章 第37讲 有机结构与同分异构体.ppt
  • 安全使用手持电动工具.docx安全使用手持电动工具.docx
  • 2013届高考化学总复习(第1轮)广东专版课件:第10章 第36讲 合成有机高分子化合物.ppt2013届高考化学总复习(第1轮)广东专版课件:第10章 第36讲 合成有机高分子化合物.ppt
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1