分享
分享赚钱 收藏 举报 版权申诉 / 32

类型人教版九年级数学上册第二十四章圆专题练习试题(详解).docx

  • 上传人:a****
  • 文档编号:869560
  • 上传时间:2025-12-17
  • 格式:DOCX
  • 页数:32
  • 大小:910.02KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    人教版 九年级 数学 上册 第二 十四 专题 练习 试题 详解
    资源描述:

    1、人教版九年级数学上册第二十四章圆专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法正确的是()近似数精确到十分位;在,中,最小的是;如图所示,在数轴上点所表示的数为;用反证法证明命题“一个三

    2、角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;如图,在内一点到这三条边的距离相等,则点是三个角平分线的交点A1B2C3D42、往直径为的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为()ABCD3、如图,已知中,如果以点为圆心的圆与斜边有公共点,那么的半径的取值范围是()ABCD4、如图物体由两个圆锥组成,其主视图中,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A2BCD5、如图,矩形中,分别是,边上的动点,以为直径的与交于点,则的最大值为()A48B45C42D406、如图,AB是O的直径,点E是AB上一点,过点E作CDAB,交O于点C,D,以下结论

    3、正确的是()A若O的半径是2,点E是OB的中点,则CDB若CD,则O的半径是1C若CAB30,则四边形OCBD是菱形D若四边形OCBD是平行四边形,则CAB607、如图,在ABC中, AG平分CAB,使用尺规作射线CD,与AG交于点E,下列判断正确的是()AAG平分CDBC点E是ABC的内心D点E到点A,B,C的距离相等8、下列说法:(1)长度相等的弧是等弧;(2)弦不包括直径;(3)劣弧一定比优弧短;(4)直径是圆中最长的弦其中正确的有()A1个B2个C3个D4个9、已知圆的半径为扇形的圆心角为,则扇形的面积为()ABCD10、已知O中最长的弦为8cm,则O的半径为()cmA2B4C8D16

    4、第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,从一块半径为的圆形铁皮上剪出一个圆周角为120的扇形,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_2、如图,ABC是O的内接三角形,AB是O的直径,I是ABC的内心,则BIA的度数是_3、如图,在O中,是O的直径,点是点关于的对称点,是上的一动点,下列结论:;的最小值是10上述结论中正确的个数是_4、如图,抛物线的图象与坐标轴交于点、,顶点为,以为直径画半圆交轴的正半轴于点,圆心为,是半圆上的一动点,连接,是的中点,当沿半圆从点运动至点时,点运动的路径长是_5、已知在平面直角坐标系中,点的坐标为是抛物线

    5、对称轴上的一个动点小明经探究发现:当的值确定时,抛物线的对称轴上能使为直角三角形的点的个数也随之确定若抛物线的对称轴上存在3个不同的点,使为直角三角形,则的值是_三、解答题(5小题,每小题10分,共计50分)1、(1)课本再现:在中,是所对的圆心角,是所对的圆周角,我们在数学课上探索两者之间的关系时,要根据圆心O与的位置关系进行分类图1是其中一种情况,请你在图2和图3中画出其它两种情况的图形,并从三种位置关系中任选一种情况证明;(2)知识应用:如图4,若的半径为2,分别与相切于点A,B,求的长2、如图,半径为6的O与RtABC的边AB相切于点A,交边BC于点C,D,B=90,连接OD,AD(1

    6、)若ACB=20,求的长(结果保留)(2)求证:AD平分BDO3、如图,已知直线交于A、B两点,是的直径,点C为上一点,且平分,过C作,垂足为D(1)求证:是的切线;(2)若,的直径为20,求的长度4、如图,为的直径,射线交于点F,点C为劣弧的中点,过点C作,垂足为E,连接(1)求证:是的切线;(2)若,求阴影部分的面积5、如图,在直角梯形ABCD中,ADBC,ABC=90,AB=12cm,AD=8cm,BC=22cm,AB为O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动P、Q分别从点A、C同时出发,当其中一个动点到达端点时

    7、,另一个动点也随之停止运动,设运动时间为t(s)(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,PQ与O相切?-参考答案-一、单选题1、B【解析】【分析】根据近似数的精确度定义,可判断;根据实数的大小比较,可判断;根据点在数轴上所对应的实数,即可判断;根据反证法的概念,可判断;根据角平分线的性质,可判断【详解】近似数精确到十位,故本小题错误;,最小的是,故本小题正确;在数轴上点所表示的数为,故本小题错误;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角或三个钝角”,故本小题错误;在内一点到这三条边的距离相等,则点是三个角平分线的交点,故本小

    8、题正确故选B【考点】本题主要考查近似数的精确度定义,实数的大小比较,点在数轴上所对应的实数,反证法的概念,角平分线的性质,熟练掌握上述知识点,是解题的关键2、C【解析】【分析】过点O作ODAB于D,交O于E,连接OA,根据垂径定理即可求得AD的长,又由O的直径为,求得OA的长,然后根据勾股定理,即可求得OD的长,进而求得油的最大深度的长【详解】解:过点O作ODAB于D,交O于E,连接OA,由垂径定理得:,O的直径为,在中,由勾股定理得:,油的最大深度为,故选:【考点】本题主要考查了垂径定理的知识此题难度不大,解题的关键是注意辅助线的作法,构造直角三角形,利用勾股定理解决3、C【解析】【分析】作

    9、CDAB于D,根据勾股定理计算出AB=13,再利用面积法计算出然后根据直线与圆的位置关系得到当时,以C为圆心、r为半径作的圆与斜边AB有公共点【详解】解:作CDAB于D,如图,C=90,AC=3,BC=4,以C为圆心、r为半径作的圆与斜边AB有公共点时,r的取值范围为故选:C【考点】本题考查了直线与圆的位置关系:设O的半径为r,圆心O到直线l的距离为d:直线l和O相交dr;直线l和O相切d=r;直线l和O相离dr4、D【解析】【分析】先证明ABD为等腰直角三角形得到ABD45,BDAB,再证明CBD为等边三角形得到BCBDAB,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的

    10、比等于AB:CB,从而得到下面圆锥的侧面积【详解】A90,ABAD,ABD为等腰直角三角形,ABD45,BDAB,ABC105,CBD60,而CBCD,CBD为等边三角形,BCBDAB,上面圆锥与下面圆锥的底面相同,上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,下面圆锥的侧面积1故选D【考点】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长也考查了等腰直角三角形和等边三角形的性质5、A【解析】【分析】过A点作AHBD于H,连接OM,如图,先利用勾股定理计算出BD=75,则利用面积法可计算出AH=36,再证明点O在AH上时,OH

    11、最短,此时HM有最大值,最大值为24,然后根据垂径定理可判断MN的最大值【详解】解:过A点作AHBD于H,连接OM,如图,在RtABD中,BD=,AHBD=ADAB,AH=36,O的半径为26,点O在AH上时,OH最短,HM=,此时HM有最大值,最大值为:24,OHMN,MN=2MH,MN的最大值为224=48故选:A【考点】本题考查了垂径定理:直于弦的直径平分这条弦,并且平分弦所对的两条弧也考查了矩形的性质和勾股定理6、C【解析】【分析】根据垂径定理,解直角三角形知识,一一求解判断即可【详解】解:A、OCOB2,点E是OB的中点,OE1,CDAB,CEO90,CD2CE, ,本选项错误不符合

    12、题意;B、根据,缺少条件,无法得出半径是1,本选项错误,不符合题意;C、A30,COB60,OCOB,COB是等边三角形,BCOC,CDAB,CEDE,BCBD,OCODBCBD,四边形OCBD是菱形;故本选项正确本选项符合题意D、四边形OCBD是平行四边形,OC=OD,所以四边形OCBD是菱形OCBC,OCOB,OCOBBC,BOC60,故本选项错误不符合题意故选:C【考点】本题考查了圆周角定理,垂径定理,菱形的判定和性质,等边三角形的判定和性质,正确的理解题意是解题的关键7、C【解析】【分析】根据作法可得CD平分ACB,结合题意即可求解【详解】解:由作法得CD平分ACB,AG平分CAB,E

    13、点为ABC的内心故答案为:C【考点】此题考查了尺规作图(角平分线),以及三角形角平分线的性质,熟练掌握相关基本性质是解题的关键8、A【解析】【分析】根据等弧的定义、弦的定义、弧的定义、分别判断后即可确定正确的选项【详解】解:(1)长度相等的弧不一定是等弧,弧的度数必须相同,故错误;(2)直径是圆中最长的弦,故(2)错误,(4)正确;(3)同圆或等圆中劣弧一定比优弧短,故错误;正确的只有一个,故选:A【考点】本题考查了圆的有关定义,能够了解圆的有关知识是解答本题的关键,难度不大9、B【解析】【分析】扇形面积公式为: 利用公式直接计算即可得到答案【详解】解: 圆的半径为扇形的圆心角为, 故选:【考

    14、点】本题考查的是扇形的面积的计算,掌握扇形的面积的计算公式是解题的关键10、B【解析】【分析】O最长的弦就是直径从而不难求得半径的长【详解】解:O中最长的弦为8cm,即直径为8cm,O的半径为4cm故选:B.【考点】本题考查弦,直径等知识,记住圆中的最长的弦就是直径是解题的关键二、填空题1、【解析】【分析】连接OA,OB,证明AOB是等边三角形,继而求得AB的长,然后利用弧长公式可以计算出的长度,再根据扇形围成圆锥底面圆的周长等于扇形的弧长即可作答【详解】连接OA,OB,则BAO=BAC=60,又OA=OB,AOB是等边三角形,AB=OA=1,BAC=120,的长为:,设圆锥底面圆的半径为r故

    15、答案为【考点】本题主要考查了弧长公式以及扇形弧长与底面圆周长相等的知识点,借助等量关系即可算出底面圆的半径2、135【解析】【分析】先根据直径所对的圆周角是直角得出,进而求出,再根据内心是三角形内角平分线的交点得出,最后利用三角形的内角和定理即得【详解】AB是O的直径I是ABC的内心IA、IB是角平分线 故答案为:135【考点】本题考查圆周角定理、内心、角平分线的定义及三角形内角和定理,解题关键是熟知:直径所对的圆周角为直角;三角形的内心是内角平分线的交点3、3【解析】【分析】根据点是点关于的对称点可知,进而可得;根据一条弧所对的圆周角等于圆心角的一半即可得结论;根据等弧对等角,可知只有当和重

    16、合时,;作点关于的对称点,连接,DF,此时的值最短,等于的长,然后证明DF是的直径即可得到结论【详解】解:,点是点关于的对称点,正确;,正确;的度数是60,的度数是120,只有当和重合时,只有和重合时,错误;作关于的对称点,连接,交于点,连接交于点,此时的值最短,等于的长连接,并且弧的度数都是60,是的直径,即,当点与点重合时,的值最小,最小值是10,正确故答案为:3【考点】本题考查了圆的综合知识,涉及圆周角、圆心角、弧、弦的关系、最短距离的确定等,掌握圆的基本性质并灵活运用是解题关键4、【解析】【分析】先求出A、B、E的坐标,然后求出半圆的直径为4,由于E为定点,P是半圆AB上的动点,N为E

    17、P的中点,所以N的运动路经为直径为2的半圆,计算即可.【详解】解:,点E的坐标为(1,-2),令y=0,则,解得,A(-1,0),B(3,0),AB=4,由于E为定点,P是半圆AB上的动点,N为EP的中点,所以N的运动路经为直径为2的半圆,如图,点运动的路径长是.【考点】本题属于二次函数和圆的综合问题,考查了运动路径的问题,熟练掌握二次函数和圆的基础是解题的关键.5、2或【解析】【分析】分,和 确定点M的运动范围,结合抛物线的对称轴与,共有三个不同的交点,确定对称轴的位置即可得出结论【详解】解:由题意得:O(0,0),A(3,4)为直角三角形,则有:当时, 点M在与OA垂直的直线上运动 (不含

    18、点O);如图,当时,点M在与OA垂直的直线上运动 (不含点A);当时,点M在与OA为直径的圆上运动,圆心为点P,点P为OA的中点, 半径r= 抛物线的对称轴与x轴垂直由题意得,抛物线的对称轴与,共有三个不同的交点,抛物线的对称轴为的两条切线,而点P到切线,的距离 ,又直线的解析式为:;直线的解析式为:;或4或-8故答案为:2或-8【考点】本题是二次函数的综合题型,其中涉及到的知识点有圆的切线的判定,直角三角形的判定,综合性较强,有一定难度运用数形结合、分类讨论是解题的关键三、解答题1、(1)见解析;(2)【解析】【分析】(1)如图2,当点O在ACB的内部,作直径,根据三角形外角的性质和等腰三角

    19、形的性质可得结论;如图3,当O在ACB的外部时,作直径CD,同理可理结论;(2)如图4,先根据(1)中的结论可得AOB=120,由切线的性质可得OAP=OBP=90,可得OPA=30,从而得PA的长【详解】解:(1)如图2,连接CO,并延长CO交O于点D,OA=OC=OB,A=ACO,B=BCO,AOD=A+ACO=2ACO,BOD=B+BCO=2BCO,AOB=AOD+BOD=2ACO+2BCO=2ACB,ACB=AOB;如图3,连接CO,并延长CO交O于点D,OA=OC=OB,A=ACO,B=BCO,AOD=A+ACO=2ACO,BOD=B+BCO=2BCO,AOB=AOD-BOD=2AC

    20、O-2BCO=2ACB,ACB=AOB;(2)如图4,连接OA,OB,OP,C=60,AOB=2C=120,PA,PB分别与O相切于点A,B,OAP=OBP=90,APO=BPO=APB=(180-120)=30,OA=2,OP=2OA=4,PA= 【考点】本题考查了切线长定理,圆周角定理等知识,掌握证明圆周角定理的方法是解本题的关键2、 (1)(2)见解析【解析】【分析】(1)连接,由,得,由弧长公式即得的长为;(2)根据切于点,可得,有,而,即可得,从而平分(1)解:连接OA,ACB20,AOD40,(2)证明:,切于点,平分【考点】本题考查与圆有关的计算及圆的性质,解题的关键是掌握弧长公

    21、式及圆的切线的性质3、 (1)证明见解析(2)【解析】【分析】(1)连接OC,根据题意可证得CAD+DCA=90,再根据角平分线的性质,得DCO=90,则CD为 O的切线;(2)过O作OFAB,则OCD=CDA=OFD=90,得四边形DCOF为矩形,设AD=x,在RtAOF中,由勾股定理得,从而求得x的值,由勾股定理求出AF的长,再求AB的长(1)证明:连接,平分,又为半径是的切线(2)解:过O作,垂足为F,四边形为矩形,设,则,的直径为20,在中,由勾股定理得,即,解得:(不合题意,舍去),由垂径定理知,F为的中点,【考点】本题考查了切线的证明,矩形的判定和性质以及勾股定理,掌握切线的定义和

    22、证明方法是解题的关键4、(1)证明见解析;(2)【解析】【分析】(1)连接BF,证明BF/CE,连接OC,证明OCCE即可得到结论;(2)连接OF,求出扇形FOC的面积即可得到阴影部分的面积【详解】(1)连接,是的直径,即,连接,点C为劣弧的中点,OC是的半径,CE是的切线;(2)连接,点C为劣弧的中点, S扇形FOC=,即阴影部分的面积为:【考点】本题主要考查了切线的判定以及扇形面积的求法,熟练掌握切线的判定定理以及扇形面积的求法是解答此题的关键5、(1)当时,四边形PQCD为平行四边形;(2)当t=2秒时,PQ与O相切【解析】【分析】(1)由题意得:,则,再由四边形PQCD是平行四边形,得

    23、到DP=CQ,由此建立方程求解即可;(2)设PQ与O相切于点H过点P作PEBC,垂足为E先证明四边形ABEP是矩形,得到PE=AB=12cm由AP=BE=tcm,CQ=2tcm,得到BQ =(222t)cm,EQ=223t)cm;再由切线长定理得到AP=PH,HQ=BQ,则PQ=PH+HQ=AP+BQ=t+222t=(22t)cm;在RtPEQ中,PE2+EQ2=PQ2,则122+(223t)2=(22t)2,即:8t288t+144=0,由此求解即可【详解】解:(1)由题意得:,四边形PQCD是平行四边形,DP=CQ,解得,当时,四边形PQCD为平行四边形;(2)设PQ与O相切于点H过点P作

    24、PEBC,垂足为EPEB=90在直角梯形ABCD,ADBC,ABC=90,BAD=90,四边形ABEP是矩形,PE=AB=12cmAP=BE=tcm,CQ=2tcm,BQ=BCCQ=(222t)cm,EQ=BQBE=222tt=(223t)cm;AB为O的直径,ABC=DAB=90,AD、BC为O的切线,AP=PH,HQ=BQ,PQ=PH+HQ=AP+BQ=t+222t=(22t)cm;在RtPEQ中,PE2+EQ2=PQ2,122+(223t)2=(22t)2,即:8t288t+144=0,t211t+18=0,(t2)(t9)=0,t1=2,t2=9;P在AD边运动的时间为秒t=98,t=9(舍去),当t=2秒时,PQ与O相切【考点】本题主要考查了切线长定理,矩形的性质与判定,勾股定理,平行四边形的性质等等,解题的关键在于能够熟练掌握切线长定理

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教版九年级数学上册第二十四章圆专题练习试题(详解).docx
    链接地址:https://www.ketangku.com/wenku/file-869560.html
    相关资源 更多
  • 人教版二年级数学上册期末模拟试卷带答案(满分必刷).docx人教版二年级数学上册期末模拟试卷带答案(满分必刷).docx
  • 人教版二年级数学上册期末模拟试卷带答案(培优b卷).docx人教版二年级数学上册期末模拟试卷带答案(培优b卷).docx
  • 人教版二年级数学上册期末模拟试卷带答案(a卷).docx人教版二年级数学上册期末模拟试卷带答案(a卷).docx
  • 人教版二年级数学上册期末模拟试卷带答案解析.docx人教版二年级数学上册期末模拟试卷带答案解析.docx
  • 人教版二年级数学上册期末模拟试卷带答案下载.docx人教版二年级数学上册期末模拟试卷带答案下载.docx
  • 人教版二年级数学上册期末模拟试卷带答案.docx人教版二年级数学上册期末模拟试卷带答案.docx
  • 人教版二年级数学上册期末模拟试卷完美版.docx人教版二年级数学上册期末模拟试卷完美版.docx
  • 人教版二年级数学上册期末模拟试卷完整版.docx人教版二年级数学上册期末模拟试卷完整版.docx
  • 人教版二年级数学上册期末模拟试卷完整.docx人教版二年级数学上册期末模拟试卷完整.docx
  • 人教版二年级数学上册期末模拟试卷学生专用.docx人教版二年级数学上册期末模拟试卷学生专用.docx
  • 人教版二年级数学上册期末模拟试卷含解析答案.docx人教版二年级数学上册期末模拟试卷含解析答案.docx
  • 人教版二年级数学上册期末模拟试卷含精品答案.docx人教版二年级数学上册期末模拟试卷含精品答案.docx
  • 人教版二年级数学上册期末模拟试卷含答案(黄金题型).docx人教版二年级数学上册期末模拟试卷含答案(黄金题型).docx
  • 人教版二年级数学上册期末模拟试卷含答案(预热题).docx人教版二年级数学上册期末模拟试卷含答案(预热题).docx
  • 人教版二年级数学上册期末模拟试卷含答案(达标题).docx人教版二年级数学上册期末模拟试卷含答案(达标题).docx
  • 人教版二年级数学上册期末模拟试卷含答案(轻巧夺冠).docx人教版二年级数学上册期末模拟试卷含答案(轻巧夺冠).docx
  • 人教版二年级数学上册期末模拟试卷含答案(能力提升).docx人教版二年级数学上册期末模拟试卷含答案(能力提升).docx
  • 人教版二年级数学上册期末模拟试卷含答案(综合题).docx人教版二年级数学上册期末模拟试卷含答案(综合题).docx
  • 人教版二年级数学上册期末模拟试卷含答案(综合卷).docx人教版二年级数学上册期末模拟试卷含答案(综合卷).docx
  • 人教版二年级数学上册期末模拟试卷含答案(精练).docx人教版二年级数学上册期末模拟试卷含答案(精练).docx
  • 人教版二年级数学上册期末模拟试卷含答案(突破训练).docx人教版二年级数学上册期末模拟试卷含答案(突破训练).docx
  • 人教版二年级数学上册期末模拟试卷含答案(研优卷).docx人教版二年级数学上册期末模拟试卷含答案(研优卷).docx
  • 人教版二年级数学上册期末模拟试卷含答案(满分必刷).docx人教版二年级数学上册期末模拟试卷含答案(满分必刷).docx
  • 人教版二年级数学上册期末模拟试卷含答案(模拟题).docx人教版二年级数学上册期末模拟试卷含答案(模拟题).docx
  • 人教版二年级数学上册期末模拟试卷含答案(最新).docx人教版二年级数学上册期末模拟试卷含答案(最新).docx
  • 人教版二年级数学上册期末模拟试卷含答案(新).docx人教版二年级数学上册期末模拟试卷含答案(新).docx
  • 人教版二年级数学上册期末模拟试卷含答案(巩固).docx人教版二年级数学上册期末模拟试卷含答案(巩固).docx
  • 人教版二年级数学上册期末模拟试卷含答案(完整版).docx人教版二年级数学上册期末模拟试卷含答案(完整版).docx
  • 人教版二年级数学上册期末模拟试卷含答案(夺分金卷).docx人教版二年级数学上册期末模拟试卷含答案(夺分金卷).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1