人教版九年级数学上册第二十四章圆专题训练练习题(详解).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 九年级 数学 上册 第二 十四 专题 训练 练习题 详解
- 资源描述:
-
1、人教版九年级数学上册第二十四章圆专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,矩形中,分别是,边上的动点,以为直径的与交于点,则的最大值为()A48B45C42D402、如图,正五边形内接
2、于,为上的一点(点不与点重合),则的度数为()ABCD3、如图,在中,cm,cm是边上的一个动点,连接,过点作于,连接,在点变化的过程中,线段的最小值是()A1BC2D4、如图,已知长方形中,圆B的半径为1,圆A与圆B内切,则点与圆A的位置关系是()A点C在圆A外,点D在圆A内B点C在圆A外,点D在圆A外C点C在圆A上,点D在圆A内D点C在圆A内,点D在圆A外5、如图,圆内接正六边形的边长为4,以其各边为直径作半圆,则图中阴影部分的面积为()ABCD6、已知O中最长的弦为8cm,则O的半径为()cmA2B4C8D167、已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()ABCD8、
3、如图,O的直径垂直于弦,垂足为若,则的长是()ABCD9、如图,正三角形PMN的顶点分别是正六边形ABCDEF三边的中点,则三角形PMN与六边形ABCDEF的面积之比()A1:2B1:3C2:3D3:810、已知O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A30B60C30或150D60或120第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,ABC=90,A=58,AC=18,点D为边AC的中点以点B为圆心,BD为半径画圆弧,交边BC于点E,则图中阴影部分图形的面积为_a2、如图,PA,PB分别切O于A,B,并与O的切线,分别相
4、交于C,D,已知PCD的周长等于10cm,则PA=_ cm3、如图,ABC内接于O,CAB=30,CBA=45,CDAB于点D,若O的半径为2,则CD的长为_4、如图,四边形ABCD内接于O,A=125,则C的度数为_5、如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为_三、解答题(5小题,每小题10分,共计50分)1、如图,内接于,则的直径等于多少?2、已知:如图,圆O是ABC的外接圆,AO平分BAC(1)求证:ABC是等腰三角形;(2)当OA4,AB6,求边BC的长3、如图,在中,的
5、中点(1)求证:三点在以为圆心的圆上;(2)若,求证:四点在以为圆心的圆上4、如图,已知在O中,直径MN10,正方形ABCD的四个顶点分别在O及半径OM、OP上,并且POM45,求正方形的边长5、问题提出(1)如图,在ABC中,ABAC10,BC12,点O是ABC的外接圆的圆心,则OB的长为 问题探究(2)如图,已知矩形ABCD,AB4,AD6,点E为AD的中点,以BC为直径作半圆O,点P为半圆O上一动点,求E、P之间的最大距离;问题解决(3)某地有一块如图所示的果园,果园是由四边形ABCD和弦CB与其所对的劣弧场地组成的,果园主人现要从入口D到上的一点P修建一条笔直的小路DP已知ADBC,A
6、DB45,BD120米,BC160米,过弦BC的中点E作EFBC交于点F,又测得EF40米修建小路平均每米需要40元(小路宽度不计),不考虑其他因素,请你根据以上信息,帮助果园主人计算修建这条小路最多要花费多少元?-参考答案-一、单选题1、A【解析】【分析】过A点作AHBD于H,连接OM,如图,先利用勾股定理计算出BD=75,则利用面积法可计算出AH=36,再证明点O在AH上时,OH最短,此时HM有最大值,最大值为24,然后根据垂径定理可判断MN的最大值【详解】解:过A点作AHBD于H,连接OM,如图,在RtABD中,BD=,AHBD=ADAB,AH=36,O的半径为26,点O在AH上时,OH
7、最短,HM=,此时HM有最大值,最大值为:24,OHMN,MN=2MH,MN的最大值为224=48故选:A【考点】本题考查了垂径定理:直于弦的直径平分这条弦,并且平分弦所对的两条弧也考查了矩形的性质和勾股定理2、B【解析】【分析】根据圆周角的性质即可求解.【详解】连接CO、DO,正五边形内心与相邻两点的夹角为72,即COD=72,同一圆中,同弧或同弦所对应的圆周角为圆心角的一半,故CPD=,故选B.【考点】此题主要考查圆内接多边形的性质,解题的关键是熟知圆周角定理的应用.3、A【解析】【分析】由AEC90知,点E在以AC为直径的M的上(不含点C、可含点N),从而得BE最短时,即为连接BM与M的
8、交点(图中点E点),BE长度的最小值BEBMME【详解】如图,由题意知,在以为直径的的上(不含点、可含点,最短时,即为连接与的交点(图中点点),在中,则,长度的最小值,故选:【考点】本题主要考查了勾股定理,圆周角定理,三角形的三边关系等知识点,难度偏大,解题时,注意辅助线的作法4、C【解析】【分析】根据内切得出圆A的半径,再判断点D、点E到圆心的距离即可【详解】圆A与圆B内切,圆B的半径为1圆A的半径为55点D在圆A内在RtABC中,点C在圆A上故选:C【考点】本题考查点与圆的位置关系、圆与圆的位置关系、勾股定理,熟练掌握点与圆的位置关系是关键5、A【解析】【分析】正六边形的面积加上六个小半圆
9、的面积,再减去中间大圆的面积即可得到结果【详解】解:正六边形的面积为:,六个小半圆的面积为:,中间大圆的面积为:,所以阴影部分的面积为:,故选:A【考点】本题考查了正多边形与圆,圆的面积的计算,正六边形的面积的计算,正确的识别图形是解题的关键6、B【解析】【分析】O最长的弦就是直径从而不难求得半径的长【详解】解:O中最长的弦为8cm,即直径为8cm,O的半径为4cm故选:B.【考点】本题考查弦,直径等知识,记住圆中的最长的弦就是直径是解题的关键7、C【解析】【分析】先依据题意画出图形,如图(见解析),过点A作于D,利用勾股定理可求出AD的长,再根据三角形内切圆的性质、三角形的面积公式即可得出答
10、案【详解】解:如图,内切圆O的半径为,切点为,则过点A作于D,设,则由勾股定理得:则,即解得,即又即解得则内切圆的半径为故选:C【考点】本题考查了三角形内切圆的性质、勾股定理等知识点,读懂题意,正确画出图形,并求出AD的长是解题关键8、C【解析】【分析】根据直角三角形的性质可求出CE=1,再根据垂径定理可求出CD【详解】解:O的直径垂直于弦, ,CE=1CD=2故选:C【考点】本题考查了直角三角形的性质,垂径定理等知识点,能求出CE=DE是解此题的关键9、D【解析】【分析】连接BE,设正六边形的边长为a,首先证明PMN是等边三角形,分别求出PMN,正六边形ABCDEF的面积即可【详解】解:连接
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
天津市太平村中学高中英语 写作话题分解 健康、运动与饮食课件 新人教版.ppt
